
www.manaraa.com

v':''r'r'

'iCj:.VV',V«',."'''j-i.'','I /"



www.manaraa.com

.iy



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
THE SOFTWARE ENGINEERING PROTOTYPE

by

Michael R. Kirchner

June 1983

Th€isis Advisor: Gordon C. Howe 11

Approved for public release; distribution unlimited

T210117



www.manaraa.com



www.manaraa.com

t*A ^

SECURITY CUASSIPICATION OP THIS PAGE (Wht\ Dmtm Enturmd)
Monterey, CA 93943

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPOHT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtltlt)

The Software Engineering Prototype

5. TYPE OF REPORT & PE-RIOD COVERED

Master's Thesis

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORr«>

Michael R. Kirchner

a. CONTRACT OR GRANT NUMBERr*;

• • PeRFORMINOOROANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

II. CONTROLLING Or^lCE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California

12. REPORT DATE

June, 1983
13. NUMBER OF PAGES

100
U. MONITORING AGENCY NAME ft AODRESSCi/ d<//*ran( Irom ConUoltlng Oltlem) 15. SECURITY CLASS, (of thia roport)

UNCLASSIFIED
15«. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

te. DISTRIBUTION STATEMENT (ol Ihit Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of lh» mtattmct anffd /n Block 30, It dlUartH /ram Rmport)

le. SURRLEMENTARY NOTES

19. KEY WORDS fConlinu* on fvtf aid* It n»e»aaarr and Idantlty br block numbar)

software engineering, software prototype, software design,
design theories, software engineering environments, case
studies, software development, information systems development,
system development life cycle

20. ABSTRACT (CoitUnua on ravarao alda It naeaaaarr and Idantlty by block numbar)

Experience has shown that the traditional method of software de-
velopment often has poor results. Recently, a new approach to
software development, the prototype approach, has been proposed.
This thesis presents an integrated view of general design theorie^
and relates that view to software design and development. The
current thought on prototypes is described and the basic require-
ments for a software engineering environment are presented . (Cont)

DD FORM
I JAN 7S 1473 EDITION OF 1 NOV 6S IS OBSOLETE

S/N 0)02-LF. 014- 6601
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bntarmo^



www.manaraa.com



www.manaraa.com

SECURITY CLASSIFICATION OF THIS PACE (Whan Dmtm Bnfnd)

ABSTRACT (Continued) Block # 20

Software prototypes are shown to support the integrated view of
designs. Four case studies of using prototypes are presented
and recommendations for further study are made.

S'N 0102- LF- 014-660)

2 SECURITY CLASSIFICATION OF THIS PAGEfWh»ii Dmtm Enfrmd)



www.manaraa.com



www.manaraa.com

Approved for public release; distribution unlimited

The Software Engineering Prototype

by

Michael R. Kirchner
B.S., Illinois Benedictine College, 1973

Submitted in parxial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
June 1983



www.manaraa.com



www.manaraa.com

ABSTRACT

Experisnce has shown that zhe -craditional method of

software development oftei: has poor results. Recently, a

new approach to software development, -he prototype

approach, has been proposed. This thesis presents an inte-

grated view of general design theories and relates that view

to software design and development. The current thought on

prototypes is described and the basic reguirements for a

software engineering environment are presentad. Software

prototypes are showc to support the integrated view of

design. Four case studies cf using prototypes are presented

and recommendations for further study are made.



www.manaraa.com



www.manaraa.com

TABLE CF CONTENTS

I. INTECDOCTION 10

II. MODELS OF DESIGN METHODS 12

A. STROCTUREC MODELS OF DESIGN 12

B. WICKED PRCELEMS 15

C. ACCUMULATEE KNOWLEDGE MODELS OF DESIGN .... 18

1. Design is Argumentative 18

2. Patterns in Design 18

3. Design as Learning 19

4. Design is Satisficing 20

C. DESIGN AS A TECHNOLOGICAL ACTIVITY 21

E, DESIGN IS EVOLUTIONARY 21

F. SUMMARY 23

III. SOFTWARE DESIGN METHODS 25

A. SOFTWARE lESIGN IS SYMMETRICAL AND ADAPTIVE . 25

B. DESIGN IS SATISFICING 26

C. SOFTWARE DESIGN IS A WICKED PROBLEM 28

D. COMMUNICATIONS BETWEEN THE DESIGNER AND THE

END USER 33

E. SOFTWARE DESIGN IS LEARNING 35

F. SOFTWARE DESIGN HAS AN ORGANIZATIONAL CONTEXT 40

G. SOFTWARE DESIGN IS EVOLUTIONARY 43

H. SUMMARY 47

IV. THE SOFTWARE PROTOTYPE 49

A. INTRODUCTION 49

3. THE PROTOTYPE PROCESS 50

C. PROTOTYPES AS MODELS 51

D. STRATEGIES TO PRODUCE PROTOTYPES 53



www.manaraa.com



www.manaraa.com

1. The 'Methodology* Strategy 53

2. Executable Specifications 53

3. Automatic Programming ".
. 54

E. USES OF PFOTOTYPES 55

1. To Clarify the Oser's Requirements .... 55

2. To Verify the Feasibility of Design ... 56

3. To Create the Final Sysxem 56

F. PROTOTYPES ADDRESS THE ESSENTIAL DESIGN

ELEMENTS 57

1. Prototyping is a Symmetrical and Adaptable

Process 57

2. Prototyping 'Tames' the Wicked Problem . . 57

3. Software Prototyping is Satisficing ... 59

U. Prototyping is Communicating 59

5- The Software Prototype is a Learning Aid . 60

6. The Prototype Processs Accounrs for

Organizational Issues 61

7. The Prototype Process is Evolurionary . . 62

G. SOMMABY AND INTERMEDIATE CONCiaSIONS 63

V. THE SOFTWARE ENGINEERING ENVIRONMENT 65

A. INTRODUCTION 65

E. CHARACTERISTICS OF SOFTWARE ENGINEERING

ENVIRONMENTS 66

1. Development Supporr Tasks 66

2. Integrated 67

3. Uniform 67

a. Support a Solution Strategy 67

5. Adaptable 68

6. Functionally Unique 68

7. Interactive 6 8

8. Recent Developments 68

C. a SOFTWARE ENGINEERING ENVIRONMENT FOR

PROTOTYPES 69



www.manaraa.com



www.manaraa.com

1. Technical Components 69

2. Support for Software Design 72

3. Support for the Prototype Process . . -. . 74

D. SOMBARY 76

VI. CBSE EXAMPLES 77

A. SYHMETRY, EVOLUTION, SATISFICING, AND

CCWMUNICATION 77

B. LEARNING 79

C. WICKED PROELEMSr COMMUNICATIONS, AND THE

ORGANIZATIONAL CONTEXT 80

D. COMMUNICATION, LEARNING, AND EVOLUTION .... 81

E. SUMMARY 82

VII. CONCLUSIONS SU

VIII. RECCMMENDATIONS FOR FURTHER STUDY 36

A. MANAGEMENT 86

B. ACQUISITICN AND CONTRACT MANAGEMENT 36

C. ORGANIZATIONAL CONTEXT 37

D. QUALITY 3*7

E. REPRESENTATION 88

LIST CF 5EFEBENCES 39

INITIAL DISTRIBUTION LIST 99



www.manaraa.com



www.manaraa.com

LIST OF TABLES

I. Design Methodclogiss 31

II. Hypc-^heses Tested in the Experiment 3U

III. Results of the Experiment 34



www.manaraa.com



www.manaraa.com

LIST OF FIGURES

2.1 alexander's Eesign Phases 14

3.1 Kolb*s Learning Cycle Model 37

3.2 A Constructive Conflict Model for Oser

Involvement 39

3.3 lypical Life Cycle Representation 45

4.1 Ihe Prototype Model 52

4.2 Evolution of Prototypes 63



www.manaraa.com



www.manaraa.com

I- INTHODaCTIOli

Current software engineering practices are bas«=d on a

development modal which is 10 to 15 years old.. This model

is often referred to as the waterfall model. The waterfall

model shows the development of software as a series of

discrete steps [ Ref . 1r 2, 3, 4, and 5].

Experience indicates, however, that software development

is net as discrete as the model indicates, so the model has

teen rsfined by adding loops between each of the steps.

Furthermore, as software maintenance has gained recognition,

there is increased pressure to refine the waterfall model to

show the added importance of maintenance in the software

life-cycle.

The software engineering profession's concern about

software maintenance, which is more properly termed refine-

ment and enhancement, has prompted several conjectures.

Dodd [Hef. 20] has suggested that the current cycl€ of

develop, inplement, refine and enhance, implement, refine

and enhance, implement, and so on is really the construction

and refinement of a prototype system.

Several other authors have suggested that we should

develop software prototypes as an alternative to the tradi-

tional, or waterfall, approach to software development

[Ref. 68, 36, 62]. Their principal argument is that the

process of software development is really iterative, slowly

expanding toward a ccmpleted system. Other reasons include

enhanced communications between the user and designer, fewer

requirements problems, quicker turnaround between initial

system need and initial system implementation, to name a

few.

10



www.manaraa.com



www.manaraa.com

The process of devslcping a software prototype has

significart inruitive appeal for asers and managsrs; they

can try a system cut before comcQitting "chemselves" to a

system which is either unsatisfactory or undelivered. Aside

from this appeal and the benefits often cited, there seems

to be little discussion about the principles underlying the

development of software prototypes.

This thesis presents one view of how the process of

developing software prototypes supports some basic elements

of general design theory and software design specifically.

Chapter II develops an integrated set of design elements

based en several published models of the general design

process. Chapter III relates these design elements tc soft-

ware development by citing examples from the computing and

information science literature. The purpose is to show that

software design is similar to other fields of design.'

Chapter IV introduces the software prototype. The

process of developing software prototypes, their roles as

iDodels, construction strategies, and the principal uses of

prototypes are described. The chapter concludes by shewing

how prototypes support the design elements from Chapters II

and III. Chapter V briefly describes the essential features

of software engineering environments, especially those

features which are needed for developing software proto-

types. Chapter VI presents four case examples which illus-

trate the process of developing a software prototype. These

cases were chosen because in each of them there was an

explicit decision to use prototypes. Chapters VII and VIII

present Conclusions and Recommendations for Further Study.

'To paraphrase Gertrude Stein: Design is design is
design is design.

11



www.manaraa.com



www.manaraa.com

II. MODELS OF DESIGN METHODS

A. SIBOCTOBED MODELS OF DESIGH

Th€ ideas about design and design methods have undergone

some significant changes in the last 20 years. The early

models placed their emphasis on the process of design.

These models had a rational, discrete notion of design in

which the design process was thought to be a sequence of

wall-defined, highly structured activities, Many theorists

applied the ideas and principles of the scientific methcd to

the process. Alexander [Rsf. 6] was one of the earliest of

the design theorists to carefully explain design. His three

most significant contributions were:

1. The symmetry cf the design problem—that is, design

has two symmetical parts, the form (the solution to

the problem) and the cont ext (the setting which

defines the prcblem) . "... adapta-icn is a mutual

phencmenon referring to the context's adaptation to

the form as much as the form's adaptation to it's

context ..." The design problem is an effort to

achieve "fitness" between the form and it's context.

[Hef . 6]

2. The formal decomposition of a se-c of requirements

into successively smaller subuni-cs.

3. The importance of diagrams in design. A diagram, for

Alexander, is "[a]ny pat-ern which, by being

abstracted from a real situation, conveys the phys-

ical influence of certain demands or forces ..."

[Bef- 6: p. 85]

12



www.manaraa.com



www.manaraa.com

Alexander chose tc emphasize the process of deccnpos'^-ior.

in his early work. This process was divided into two

phases, analysis and synthesis.

In analysis, the designer, faced with a problen, derives

a mental picture— often vague and unsatisf actory--of the

demands of the context, and then decomposes that picture

into sets (a mathematical picture) . Synthesis begins by

developing diagrams (tased on the sets) , using the diagrams

to form a design, and then deriving the form (see Figure

2.1). Alexander also discussed evaluation (he calls it

"goodness of fit"). Goodness of fit is determined by one of

two criteria, experimental or non-experimental. The experi-

mental criterion is trial and error where "[ t ]he experiment

of putting a prototype form in the context itself is the

real criterion of fit." [Ref- 6: p» 21]. The ncn-

experimental criterion is "(a] complete unitary description

of the demands made ty the context ..." [Ref. 6: p. 21].

Alexander believes that: 1) trial and error is toe expensive

and too slow and 2) there is no theory which can express

"... a unitary description of the varied phenomena of a

particular context." [Refo 6: p. 20]. For these reasons

he concentrates on the proc ess of decomposition.

2

Alexander's structured view was shared by many theorists

during the early 1960«s. [Ref. 8, 7]. Archer [Ref. 7]

thought of design as a goal-directed activity. The goals or

objectives cf the problem define the properties required in

the sclution. The details cf the design are the designer's

decisions about how tc implement those properties [Ref. 7:

p. 286].

2 Alexander devotes an entire Appendix to the
"Mathematical Treatment of Decomposition."

13



www.manaraa.com



www.manaraa.com

CONTEXT FORM

CI Fl

> f

k

C2 F2

' >

> i

PI F''u««

MENTAL
PICTURE

ACTUAL

WORLD

FORMAL
PICTURE OF

MENTAL

PICTURE

Figure 2.1 Alexander's Design Phases.

14



www.manaraa.com



www.manaraa.com

Archer identifies three components of the design

process:

1. The advance through the project and through tim-e;

2. The branching cf xhe problem into its logical parts;

and,

3. A problem-solving process cyclically moving through

subproblems (using a 30-st9p reiterative operational

model)

.

Jones [Bef. 8] called the thrae stages in his view of

the design process divergence, transformation, and conver-

gence. He was quite convinced that designers should think

cf these stages as separate:

...there is little doubt that thair separation is prere-
quisite to whatever changes of methodology are necessary
at each stage before they can be reintearated to form a
process that works well at the systems level. [Ref. 8:
P- 64]

E. aiCKID FBOBLEMS

These early models ware often criticized. One critique

suggested that design problems are "wicked problems" and are

not, therefore, amenable tc structured analysis (and deccm-

pcsiticn) . The term "wicked problem" refers to a

. . . . class of social system problems which are ill-
formulated, where the information is confusing, where
there are many clients and decision-makers with
conflicting values, and where the ramifications in the
whcle system are thoroughly confusing. [Ref. 9]

Wicked problems have the following properties :

1. Wicked problems ae ill-formulated. They have no

definitive formulation and any formulation will

correspond tc the formulation of the solution. This

means that any time a formulation is made, additional

15



www.manaraa.com



www.manaraa.com

questions can be asked and more information can be

requested. This also means rhat the information

needed to understand the problem is determined by

one's idea or plan cf a solution. In other wcrds,

whenever a wicked problem is formulated there must

already be a solution in mind.

2- Wicked problems have no stopping rule. Any time a

solution is fcrmulated, it could be improved or

worked on more. One can stop only because one has

run cut of resources, patience, etc. (An architect

cculd keep modifying and improving a design solution

fcrev€r--he steps because ne has exhausted his fee,

because the building has to be finally built, or

because he has exhausted some other resource.)

3. Solutions to wicked problems cannot be correct or

false. They can only be good or bad. (There is no

correct or false building: there can only be a "gocd"

building or a "bad" building.)

4. In solving wicked problems therr is no exhaustive

list of admissable operations. Any conceivable plan,

strategy or act is permissable in finding a solution

and ncne can be perscribed as mandatory.

5. For every wicked problem there is always mere than

cne possible explanation. The selection of an expla-

nation depends on the employed world-view; the expla-

nation also determines the solution to the problem.

(The high cost of construction of a building may be

attributed to the "expensive" design, to the high

cost of materials, to the wages demanded by unions,

to high interest rates and inflation, etc.)

6. Every wicked problem is a symptom of another' "higher

level" problem. (If the maintenance of the residence

is "too expensive" to its inhabitants, this indicates

that there is a problem with the income of its inhab-

itants. )

16



www.manaraa.com



www.manaraa.com

7. No wicJced problem and no solution to it has a defini-

tive test. In ether words, any time any tast is

"successfully" passed it is still possible that the

solution will fail in some other respect. (If large

windows are designed for a residence to provide the

desired views, the heating of the residence may

become too expensive.)

8. Each wicked picblem is a "one shot" operation. There

is nc room for trial and error, and there is no

possibility fcr experimentation. (A house is

designed and built- -there is no going back to the

beginning to redesign and rebuild it.)

9. Every wicked problem is unique. No two problems are

exactly alike and no solutions or strategies leading

tc solutions can readily be copied for the next

prcblem. (Even if two residences are designed for

the same family, under the same geographical condi-

tions they will never be identical.)

10. The wicked problem solver has nc right tc be

wrcng— he is fully responsible for his action.

If design problems are considered as wicked problems,

they are certainly incompatible with the early lodels of

design. The early models clearly separated the problem from

its solution. With wicked problems, one cannot "define the

problem"--they have no definitive formulation. If one

followed the procedures of the early models of iesign, one

should be able to establish when a solution was clearly

found. Wicked problems, however, have no stopping rule.

Some cf the proponents of the early models of design devised

tests for design solutions. Alexander argued that trial and

error shculd eventually lead to "good fit"; unfortunately,

each tiiE€ a solution is tried, the problem is also changed.

17



www.manaraa.com



www.manaraa.com

C. ACCOHULATED KNOWLEDGE MODELS OF DESIGN

''• Design is Argumentative

Oth-rT design models were proposed following the criti-

cisms of the early, structured models of design. Rittel

[Ref. 13] views the whole design process as sequential

problem solving in which the cycles form networks. An

essential parr of this model is the continuous feedback

between tke designer and the problems environment. Rittel

calls this •argumentation':

. . . . the designer [is] arguing toward a solution with
himself and with ether parties involved in the project.
He builds a case leading to a better understanding of
what is to be acccmDlisn ed. In izs course, sclu-rion
principles are developed, evaluated in view of their
expected performance and decided upon. The parties
commit themselves to specific courses of action and to
the risks involved in them. In this way, better formu-
lations of tha problem are being developed simultane-
ously with a clearer and clearer image of the solution.
[Ref: 13 : p. 19-20]

If arguments are improved procedurally, their content may

improve and the products of the design— design

decisions— may also be expected to improve. While 'argu-

ing', the parties may gain new insights about the issue,

expand their world-view, modify challenged positions, and

learn more about other world-views.

2» Patterns in Cesign

Alexander introducsd the concept of pictoral

diagrams in design in 1964 [Ref. 6]. Significantly,

Alexander believed that the design diagrams were produced b^

foSl^l, rigorous anal ysi s, a design process founded en math-

ematical decomposition. Since then, Alexander and others

[Ref- 10] have concentrated on the diagrams (or Patterns)

rather than the process.

18



www.manaraa.com



www.manaraa.com

Alexander's patterns are not a resalt of rigorous

analysis. Rather, design is a process of acquirir.g knowl-

edge and then making decisions which reflect that knowledge.

The crucial issue for Alexander is the availability of

knowledge. That is, the design decision depends on the

accuiDulatsd knowledge of the designer. Patterns help to

provide the designer with the necessary knowledge to solve

the problem. The pattern forms the basis of communication

between the designer and the client. A pattern— a diagram

of what the designer knows and believes important for the

problem— is designed and then passed to the client. The

client either accepts or does not accept the pattern. In

either case, both the client and the designer gain new

knowledce: if the pattern is not accepted, the designer

proceeds to change the design.

^ • Design as Learning

Eazjanac [ Ref . 15] views the design process as

formulating the problem and proceeding with a search for the

definition cf -he solution. He emphasizes that the forirula-

tion cf the problem is not final. The formulation reflects

the understanding of the problem, based on the designer's

knowledge, at that time.

Any solution ... is already basically determined by the
definition of the problem. So the "search for solution"
is then the search for the definition of the specific
solution which best fits the knowledge the desianer has
at that time. Once the specific solution is defined it
is documented. Documentation may start during the defi-
nition cf the problem and continue sporadically during
the definition of the solution--in fact, all three
phases may at tiroes take place simultaneously. The
ultimate purpose of the documentation is to communicate
the definitions of the problem and the solution; its
immediate purpose is to aid the designer in the defini-
tion cf the problem and the solution--to help him detect
new aspects of the problem and the solution and to
detect inconsistencies in his view. [Ref. 15]

19



www.manaraa.com



www.manaraa.com

During the search and redefinition, the designer

keeps learning more atout the problem and the solution. The

designer gains new insights which ultimately lead to a new

view-- redefinition. The process (formulate the prctlem,

sear ch for the definition of the solution, document the

specific solution) is repetitive. The designer continues to

re-define and document new formula-cions until 1) the incre-

mental gain in icnowledge becomes insignificant and cannot

change the formulation enough to warrent redefinition, 2)

the incremental gain becomes zoo costly, or 3) the designer

exhausts available resources (especially time).

** • nesiqn is Satisf icing

As the designer and user learn more atout the

problem and as the sclution becomes clearer, more and more

design decisions are negotiated [Bef. 13, 15]. Since these

design decisions are reached through compromise, they cannot

be called optimal, in the sense of management science and

operations research,

Simon [ Ref . ^H] has introduced the idea of satis-

ficii^g tc describe these kinds of negotiared decisions.

Normative economics has shown that exact solutions to

iplexity the real-world business firm turns tc p:
dures that find gccd enough answers tc questions whose
best answers are unknowable. ... man is ... a satis-
ficer, a perscn whc accepts "good enough" alternatives,
not because he prefers less to more bur because he has
no choice. [Ref. 1U: p. 36]

20



www.manaraa.com



www.manaraa.com

D. DESIGN AS A TECHNOLOGICAL ACTIVITY

Cross and others [ Ref . 16] have proposed a vi.ew cf

design which requires the explicit acknowledgement of the

organization's role in design.

•Technclogv* ... clearly denotes more than just hard-
ware, and involves, at the very least, consideration of
the organizational systems within which machinery is
desiqnea, commissioned, operated and paid for.
•Technological* achievements, whether those of building
a irajcr bridge or cutting a man on the moon, are as much
organizational feats as technical ones. [Ref- 16: p.
198]

These ccnsideraticns lead to their view that a "satis-

factory" definition cf technology has the following charac-

teristics:

1. Tschnoiogy is oriented toward practical tasks.

2. Tschnoiogy relies on different kinds of organized

knowledge, of which scientific knowledge is only one.

Craft knowledge, design knowledge, and organizational

and managerial skill are others.

3. Technological activity takes place in an crganiza-

ticnal context. [Ref. 16: p. 198]

Cross and ethers devcte a great deal of space to

highlight the difference between knowing "what to do"

(scientific knowledge) and knowing "how to do" (design and

craft knowledge) . Their main point cannot be ignored: the

organizaticr plays as large a role in design as does the

individual.

E. DESIGN IS EVCLOTICNART

The early mcdels of design were frequently criticized for

their linear, step-by-step view of design. Page [Ref. 11]

warned that the design process is not executed straight from

analysis to evaluation:

21



www.manaraa.com



www.manaraa.com

....in the majority of practical design situations, by
th-G time you have produced this and found out that and
made a synthesis, you realize you have forgotten to
analyze something else here, and you have to gc arxDund
the cycle and produce a modified synthesis, and so on.
In practice, you gc around several times.

Ellinger stated that the iterative approach to design ".--

is pariculaily suited to novel projects of some complexity."

[Eef . 12: p. vi ]

Smithies [Ref. 17] has suggested that rhere are a number

of essential stages in design. The first stage, design

analysis, is the statement cf the problem, ?. The nex"c

stage consists of finding one or more tentative solutions,

IS. This sclution is then criticized, C. When the d*fsigner

criticizes the solution, he or she admits that the problem

statement was inadeguate. So, the designer re-states the

problem and begins anew.

E1-TS1-C1-P2-.. .-?n.

Smithies attributes his views about design to Pepper

[Ref. 18]. Popper believes that the process or activity of

understanding can be represented by a genaral scheme of

Ii2^J:J2 solving h^ coje c tur e and criticism . Popper's

scheme, adapted by Scithies, is this:

P1-TT-EE-P2.

PI is the initial crcblem statement; TT, the •tentat:.ve

theory', is the conjecture. EE, 'error elimination', is the

critical examination of the conjecture. P2 is the new

problem statement which emerges from the examination. It

leads to ancther attempt, and so on [Hef. 18 : p. 164].

Smithies' design stages and Popper's problem-solving scheme

are very much like Polya's [Ref. 19] method for solving

problems. Software designers should take note: Polya is a

mathenatician. Popper is a philosopher, and Smithies is an

22



www.manaraa.com



www.manaraa.com

architect, yet -sach approaches the solution to a prcblsm in

the same way.

The progress of the designer through these stages is

marked by increased knowledge and shifting priorities.

Clearly that progress is not linear and should be called

evolutionary.

F. SDMMABI

Several points about design have been made in the

proceeding sections:

1. Design is symnetrical and adaptive;

2. The interesting (i.e., large, complex) design frcblams

can be considered as wicked problems;

3. Cc mm uni cations with the end user are crucial and

depend to a large degree on pat-erns which bridge the

communications barrier between designer and end user;

4. Design is a learning process—each party brings a

different perspectiv e to the problem (and the solu-

ticn!) and leaves (or should leave) with an augmented

perspective;

5. Design is satisficing;

6. Design takes flace in an organiza-ional context;

7. Design is evcluticnary.

The separation of "chese poinds should not be miscon-

strued. Each cf these aspects is interrelated and to a

certain extent mutually dependent on one another. When we

say that design is evolutionary, we also imply that design

is symmetrical and adaptive. When we say that design is an

organizational activity, we also imply that there will be

extensive ccmmunicaticn during design. Whenever we try to

understand the problem, to learn mors about our tentative

solution, we are raising a problem of understanding, or

posing a higher level problem, which implies that design

problems are wicked problems.

23



www.manaraa.com



www.manaraa.com

This interrelated set of design elements forms the tack-

drop for the remainder of this work. The following chapter

presents evidence from the literature that each of the

design elements described above is a factor in software

design.

24



www.manaraa.com



www.manaraa.com

III. SOFTWARE DESIGN METHODS

A. SOFTiARE DESIGN IS SYMMETRICAL AMD ADAPTIVE

Several instances in th€ literature point to the

symmetry cf the software design problem. That is, the solu-

tion not only depends on the problem, but the problem

depends en the solution. Solution and problem are no* sepa-

rare issues, rather they are intertwined, much like the

figure and ground in a painting or picture. Each depends on

the other. Unfortunately, most people associated with soft-

ware design do net appreciate this point. Peters points cut

that software designers complain bitterly that requirements

are poorly defined while customers and analysts often

complain that the design is not responsive to "he problem or

problems as they see them. [Ref. 23 : p. 67]. Peters

wasn't tte first to recognize this, though. Podolsky wrote

a humorous article in 1977 [Ref. 24] where he states "Peer's

Law":

?e er j s Law

The solution to a problem changes the problem.

Several ether authors [Ref. 25, 26, and 27] have also recog-

nized that the problem definition tends to evolve as the

designers try to bound the problem, or modify the require-

ments. Mccracken and Jackson [Ref. 27] have gone so far to

say that this dependence is analogous to the Heisenberg

Principle: Any system development activity inevitably

changes the environment out cf which the need for the sys-cem

arose

.

25



www.manaraa.com



www.manaraa.com

Much affort is currently devotsd to requirements defini-

tion and yet inccmpleteness , ambiguity, and poor definitions

in requirements documents are often pointed to as the" fore-

most prcblems facing software designers today. The effort

which is spent on completely specifying the user^s require-

ments will gain nothing if software design is adaptive.

Mccracken and Jackson believe that systems requirements

can never be stated fully in advance. To assert otherwise

is to ignore the fact that the development process itself

changes the user's perceptions of what is possible,

increases insights into the applications environment, and

often changes the environment itself [Eef. 27: p. 31],

Peters says that although requirments may have been very

fixed at the beginning, they tend to change and evolve with

time. If for no othsr reason, the user's perception of the

problem changes as dees the designer's perception of that

problem [Bef. 23: p, 70],

Change is inevitable during software design, and yet

"planning for change" has long bean given lip-service, at

best. Neumann believes that planning for change is slowly

being recognized as an important end in itself--and one that

usually cannot be achieved by retrofits into an inflexible

design [Bef. 28].

B. DESIGN IS SATISFICING

Mcst computer system developers will immediately argue

this point. Developers of military systems would argue the

longest and hardest. Why should the idea of satisficing be

so controversial? Parhaps the answer lies in the past, when

machine time was expensive and computer memory limited.

These limitations do not exist at the same level today. In

fact, satisficing occurs all the time. Conn states that the

requirements for state-of-the-art systems are often scaled

26



www.manaraa.com



www.manaraa.com

dcwn to respond to the need to cut the overall expense of

the project or to meet time limitations [Hef. 26: p. '03],

Designers are, or should be, constantly aware of the -trade-

offs that are made in systems development, especially the

classic trade-off, ccst versus performance.

Several authors point out that a user should, in fact

must, sacrifice an cptimum design for a design which can

cope at a satisfactory level [ Bef . 29, 30]- John Munsun has

been quoted as saying:

Users iiii:sx look at the economics involved in automation
as a software- productivity solution. If a user can buy
a payrcll program xhat is almost what he needs for
$10,000 cr one that exactly fits his needs for $1
million- he must look at the trade-offs and reduce his
expectaticns. [ Ref . 30 : p. 66]

Satisficing has to do with more than economics.

Lawrence Peters has said that the trade-offs for execution

efficiency and ease of change must be evaluated and a

comprcmiss made. [Ref. 30]. Lockett emphasizes the role of

user satisfaction when evaluating rrade-cffs. For her, user

satisfaction is not based solely on the functional capa-

bility of a sysrem, but on useability, reliability, and

performance as well. Often the user cannot have everything

(for example, both performance and functional capability) he

cr she wants in a system. The final product may be the

result of ccmpromise. Certain functional capabilities may

te eliminated to achieve specific performance goals or, on

the other hand, the user may be willing to sacrifice

performance to obtain some functional capability [Ref. 31 :

p. 157].

Several ether authors emphasize the role of agreement,

concensus, and negotiation [Hef. 32, 39, 33]- These authors

conxend that as system design progresses, alternatives are

proposed and evaluated. The exact definition of a system

27



www.manaraa.com



www.manaraa.com

may net be as important as the concensus on the inexact

definition which is attained. An example from Land serves

to illustrate the inportance of sazisficing in sofr,vfars

design:

. . . . the designer has to be aware that building flex-
ibility into, systems can also be expensive, both in

to the needs existirg at the time or implementation, tut
which may be incapable of modification, and may have tc
be replaced if requirements change. [Ref- 29 : p. 67]

Satisficing may also involve psychological trade-offs as

well as zechnical trade-offs. Madnicic and Donovan reia-e an

instance where two possible algorithms could have b«=en used.

The inefficient algorithm was chosen because the designer

could not stand the suspense of waiting [Ref. 22: p. U91].

C. SCPTSARE DESIGN IS k WICKED PROBLEH

Hcrsx Rirrel has suggested -chat design problems are

wicked problems [Ref. 13, 9]. These problems are ill-

formulated, have confusing information, have many clients

and decision-makers with conflicting values, and have rami-

fications in the whole system which are thoroughly

confusing. Peters and Tripp have suggested that software

design is a wicked problem. Th^y believed that a comparison

of the attributes and problems associated with software

design and the characteristics of wicked problems make it

apparent that software design is itself a wicked problem

[Ref. 37]. A review of the properties of wicked problems

and their relation tc software design should help tc put

this notion in perspective.

28



www.manaraa.com



www.manaraa.com

wicked iroblams have nc defini t ive formal ax ion. Any

time a foriulation is made, additional questions can be

asked and mere information can be requested. Our inability

to define system requirements completely and unambiguously

is a symptom of this problem. Currem: efforts in software

devalcpment seem to be aimed at the symptom rather than the

problem.

Several authors raise the possibility that a complete

set cf requirements is impossible, that a stat9-cf-the-art

system is almost by definition on>= for which there remains

some degree of uncertainty at the time requirements are

preparsd. Under these conditions, it is hard to imagine a

set of "complete" requirements, since the knowledge of the

eventual system at that point can only be incomple-e

[Ref. 26 : p. 403].

Wicked problems have no stopp ing rule. Any time a solu-

tion is formulated, it can be improved or worked on more.

Cne stops only because one has run out of resouces,

ps.tienci, cr something slse , Few would argu5 -hat ther== are

clear stopping rules for software design. (Else why are

there innumerable examples of cosu and schedule overruns?)

Scluxions to wicked pro ble ms cannot be correct or f alse .

They can only be gocd or bad. This notion can be quite

controversial among computer scientists. Granted, a

computer system must work properly, especially in life-

critical cr lif e-thr satening circumstances (hospital equip-

ment or nuclear reactors, for example). But '^work properly"

has different meanings to different people, or groups of

people, just as do "correct" or "true". 3 *

^Mortimer J. Adler discusses the idea of "truth", an
idea we judce by, in Six Great Ideas, aacmillan Publishing
Co., Inc., New York, 1^B7.

29



www.manaraa.com



www.manaraa.com

Perhaps "good" and "bad" are poor choices as well, yst

most of us readily acknowledge the differences, when

presented with "good or bad, for whom?" The distinction

could be thought of in terms of 'technical success* and

•psychological success'. Technical success is the degree to

which the actual performance of the system matches its spec-

ification, while psychological success is the degree to

which the end user has confidence in th"*' final system

[Ref. 36].

Another distinction can be made from the observer's

point of view of a system: a system exists and is defined

by the perscn(s) observing it. It is as acceptable, perhaps

even laudable, as the observer perceives it to* be. If a

system wciks in the eyes of those who use it^, then to those

users that system is a good one. Conversely, if a system is

cbserved as not working by those same users, then it is not

good regardless of any ether attribute it may have.

[Ref- 33].

Ii2 aSlZiM w ic k e d problems thara is no exha ustive list

of adaissable operati ons . Any conceivable plan, strategy,

or act is permissable in finding a solution and none can be

prescribed as mandatory. Anyone in the profession car. see

that this certainly applies to software design (granted,

there are at present a finite number of "design methodolo-

gies", yet each year this number continues to increase).

The literature is replete with references to design methcd-

clogies: object-oriented design, data-or ianted design,

design based on finite-state machines, and so on.

See Table I for a large, and certainly incomplete, list of

design methodologies.

Not only are we faced with many alternatives for a

design "met hcdolcgy" , but we also are faced with innumerable

alternatives for solving the subproblems in the particular

design case at hand. There may ba more than one way in

30



www.manaraa.com



www.manaraa.com

TABLE I

C€sign Hethodologies

MneiDcriic F ull Nams of M athodoloqy

ACM/PCM Active and Passive Component Modelling
DAEES Data Oriented Design
DSSAD Data Structured Systems Analysis and

Design
DSSD Data Structured Systems Development
EEM Evolutionary Design Methodology
GEIS Gradual Evolution of Information Systems
HOS Higher Order Software
IBMFSB-SEP Adaptation of IBM Federal Systems Division

Software Engineering Practices
lESM Information Engineering Specification

Method
ISAC Information Systems Work and Analysis

of Changes
JSD Jackson System Development
NIAM Nijssen*s Information Analysis Method
SAET Structured Analysis 5 Design Technique
SABA System ARchitect's Apprentice
SD System Developer
SA-SE Structured Analysis and Structured Design
SDM System Development Methodology
SEEN Software Engineering Procedures Notebook
SREM Software Requirements Engineering Methc-

dology
STRADIS STRuctured Analysis, Design and Implemen-

tation of Information Systems
USE User Software Engineering

which a target system development process can proceed simply

because there are alternatie approaches available at the

time the requirements are written. A decision between these

alternatives may not be possible [Ref- 26 : p. U03].

ISI SJJJI^ w icked problem there is alw ays more than one

possible e xplanation. The selection of an explanation

depends en the perspective, or world-view, used. The expla-

nation also determines the solution to the problem. (For

example, the high cost of software is often attributed to

labor-intensive design and programming; poor requirements

definition is often blamed for software "failures".)

31



www.manaraa.com



www.manaraa.com

Nc wicked £r cblem and no solutio n to it has a definit ive

test. In ether words, any time any test is "successfully"

passed it is still possible that the solution will fail in

some other respect. This characteristic of wicked prcblams

is tied very closely to the idea of satisfied ng. If

computer systems are tuilt to be flexible, their design must

fce generalized. The aspect of flexibility is gained at the

expense of efficiency (not that this is bad!). So, the

system "passes" the test for flexibility but is very ineffi-

cient.

Jl£^ wi cke d problem is a "one shot" operatio n. There is

no room for trial and error , and there is no possibility for

experimentation. Many large-scale computer systems have

this characteristic. In fact, software development is some-

times compared to building a bridge--once it is built there

is nc going back to the beginning to redesign and rebuild it

(for any number of reasons) .

E13.E1 w i ck 6 d prcfclem is unique. No two problems are

exactly alike and no two solutions or strategies leading to

solution can readily be copied for the next problem. This

characteristic is very evident in software design. Military

systems, for example, are certainly unique. Commercial or

industrial problems are no less unique. Each organization

has a unique structure, set of goals and objectives, set of

interactions with the environment, cast of people, and set

of needs.*

TJ3€ wicksd problem solver has no right to be wrong --

he/she is fully respcnsible for his/ her a ction . There has

been a growing skepticism among users regarding the abili-

ties cf software designers. Users have every reason to

believe that the software designer "knows" the job.

po
lems, for obvious reasons.

32



www.manaraa.com



www.manaraa.com

clearly, the designer mast be aware of many of the factors

which could affect the design. The designer must also be

aware of the effects of design decisions- Allowances will

and can b€ made for unusual unforeseen difficulties. But to

hide behind the "This system meets the specifications you

approved and signed" statement is going (and has gone) too

far.

D. COHHONICATIONS BETWEEN THE DESIGNER AND THE END OSEP

Perhaps the single, most widely noted problem area in

software design is the problem of communication between the

user and the designer. The recent literature emphasizes the

need for extensive ccmmunications [Ref- 25, 29, 30, 35, 39,

and 40]- The most common reason given for the problem is

that users and designers speak with different vocabularies

and find it difficult to completely undersxand each crher.

Much of the literature which cites the need fcr closer

communication is based on empirical and ancedotal reports.

King and Hodriquez [ Bef . 41 ], however, report an assessment

of participation (and communication) in system development

in an experimental context. The experiment tested four

specific hypotheses (see Table II) about participative

design which were stated in null form.s

The experimental results (see table III) indicate that

participative design makes a difference, especially when

viewing the "worth of the system".

SThis only means that the 'claim', i.e.. "accepted
wisdcm" in systems design, was set up as the alternative to
the hypothesis, in accord with traditional"" Hypothesis
testing.

33



www.manaraa.com



www.manaraa.com

TABLE II

Hypotheses Tested in the Experiaent

HI: Participation in the dav^lopment of rhe systsm has
no effect on the user's perception of the worth cf the
sysxei.

H2: Participation in the development of the system has
no effect on the amount of use which is made or the
systeiE when the user is faced with strategic issues for
which the system was designsd to provide support.

H3: The substantive inputs provided by participants in
the design process will not be reflected in their usage
cf the system.

H4: The decision performance of participants in the
design process will not be different from that
of non-participants.

TABLE III

Results of the Experiment

HI: The null hypothesis is rejected.
This result indicates that managers who are involved in
the development effort tend to perceive the system to
be more worthwhile than managers who are merely given a
pre-designed system to which they had no input.

H2: Cannot reject the null hypothesis,
conclude that the use of the system in terms of number
of queries is not significantly different for design
participants and ncn- par ticipants.

H3: The null hypcthesis was rejected.
it indicates that the substantive inputs provided by the
participant group in the design and development phase
of the information system are reflected in their
actual use of the system.

H'*: Cannot reject the null hypothesis.

34



www.manaraa.com



www.manaraa.com

As King and Eodriquez put it, the

. ... experiment provides some support for "participa-
tive design theory": (a) The inputs provided by partic-
ipants appear to have been made use of in their use of
the system, and (fc) some positive attitudinal impact--
in terms of systems "worth"—seems to be achieved
through participation. [ Bef . 41]

The experiment seems to confirm some deeply held convic-

tions that participation in, and responsibility for, design

implementaticn can result in elimination or reduction of

communicaticn problems [Ref. 29: p. 65].

There may be seme reason to believe that the real

problsm viith communication is not whether it takes place but

whether tie media of communication is appropriate. The fact

that the designer has produced a comprehensive specification

and that the user has • signed off the specification after

due study, is not a guarantee that the designer has under-

stood the user's needs, or the user the designer's specifi-

cation [Eef. 29 : p. 65]. Stucki has suggested that charts,

graphics, color pictures, and other aids should be used to

enhance communications between users and designers; verbal

descriptions alone are just as inadequate for describing

software as they are for an architect building a house.

[Ref. 30]- So, although communications may be a significant

problem, its form may be equally as important.

E. SCFTUARE DESIGN IS LEARilHG

Software design is learning, just ask any experienced

program nanager. They want someone with design experience

35



www.manaraa.com



www.manaraa.com

to head the design team [Hef- 46], Without explicitly

acknowledging it, these managers place value in the ejcperi-

ence learned from previous worlc. This "learning from

doing" also takes place during the design of a system:

The reason for the discovery aspects of software design
is the designer's learning curve. As the system is
studied, analyzed, and a design formulated, certain
features are recognized as needing attention while
others are overlocked. As it becomes ^.j^parent which
features are lacking, priorities shift. [Her. 37]

If we accept that learning is an element of design, just

how importact is learning to design? In an experiment,

Alavi and Henderson [Ref. 55] evaluated two strategies for

systems development: evolutionary and traditional. By

their definition, the evolutionary strategy emphasized the

role of individual learning. They reported that the find-

ings support the hypothesis that an evolutionary implementa-

tion strategy is more effective than a traditional strategy

[Ref. 55].

They try to explain their findings this way:

A model which offers an explanation for the findings is
Kolt'3 experimental learning model [see Figure 3.1J.
Kolt suggests that for a learner to be effective he/sne
must have the ability to engage in four types of activi-
ties: (1) invclveirent in new, concrete experiences, (2)
observation and reflection of these experiences, (3)
creation cf concepts that integrate these observations
into theories, ana (U) usage of these theories to make
decisions and solve problems. . . . The evolutionary
strategy maps directly with a starting point at concrete
experiences. In contrast, the traditional approach
began with the development of a theory. ... An expla-
nation of the findings may rest in the support that the
evolutionary strategy had for the learning process.
CRef- 55]

This model has some important implications for soft-

ware design. For example, the perspective or world-view

that the designers (and users) bring to a project become

important (after all, we are starting from concrete

36



www.manaraa.com



www.manaraa.com

-

CONCRETE

EXPERIENCES

!

/ \
TESTING &

INTERNALIZING

OBSERVATION

8e REFLECTION

\ /
INTEGRATION &
GENERALIZATION

VIA THEORY

y

J

Figure 3.1 Kolb« s Learning Cycle Model-

experiences). Greenspan and others believe that the ability

to efficiently design appropriate computer systems and

enable them to evolve over their lifetime depends en the

extent tc which real world knowledge can be captured

[Hef. tlS]. Wasserman [fief. 35] takes the thought further by

suggesting that memters of the different groups concerned

with design perceive the function of an information system

differently. Misunderstandings of objectives can and do

occur, many times leading tc project failure.

37



www.manaraa.com



www.manaraa.com

Land [Bef. 29] also states that there ara different

ideologies and perspectives among the different interests

involved in a systems study. Land suggests that managers

meet this challenge by setting up a design team which

contains representatives of all the aajor interast groups,

maicing it possible for the different ideologiss and perspec-

tives of the participants to be made explicit, and for the

different members of the group to learn ^rom each others

different view points [Ref. 29].

Hew migh-c rhe participation of users in the systam

design enhance oi promote learning and real-world knowledge?

Pobey [Ref. 42] conducted an experiment -hat explored a

model of constructive conflict in the MIS development

process. - His model (presented in Figure 3.2) is described

here :

User partic ipation should lead to co nfl icts , which
should ""^ITen "5a satisfactorily resolved

.

However,
conflict and its resolution are more Tixely to occur
whan users can exercise their infl uence in the develcp-
asnt PICC3SS. Conflict itselT"* '^oas not lead to i-ts
rescluricn: rather the increase in conflict makes reolu-
ticn more difficult. It is only through participation
and influence that conflict can ba successfully resolved
in this model. [Ref. 42]

There is other research which supports Rotey's

"constructive conflict". Boland [Ref. 54] compared two

different processes of interaction in system design:

1. traditional--the designer conducts a traditional

interview of the user

2. alternative-- the designer and user share ideas,

present mutual suggestions, and critigue their

suggestions.

His results are significant:

1. The alternative process produced higher quality

designs with important implementation advantages.

38



www.manaraa.com



www.manaraa.com

PARTICIPATION

CONFLICT
CONFLICT

RESOLUTION

INFLUENCE

Figure 3.2 A Constructive conflict aodel for User Involvement.

2. The two processes produced designs which used

different organizational con-rol strategies.

3. Different processes may help to define different

problems and thereby produce different, but squally

rational, solutions. [ Bef . 54]

Boland likens the prctlem solving process to a dance during

which the designer punctuates his inreraction with the user

39



www.manaraa.com



www.manaraa.com

in a series of tga chin g , sugges t inq, and critiquing.

^

Eoland asks us to accept the notion of learning and the

importance cf real wcrld knowledge:

Let us accept that the viewpoint and implicit models
held ty designers will color their collection and inter-
pretaticn cf data about the needs of the oraanization
they are designing for. This study suggests that under-
standing how that viewpoint builds a coherent design
statement requires an understanding cf how the designer
interacts and exhanges information with his cli-^^nt. The
interaction prctoccls may then be seen as mediating the
process cf completing the designer's "point of view"
(creating the design statement). [ Hef . 54: p. 896]

Rcbry's experiment lends support to Boland's findings:

"It appears that participation does lead to perceived influ-

ence in . . . system development" [Ref- 42]. Robey's find-

ings suggest that influence is used constructively to

resolve conflict and that users learn how to exert influ-

ence towards conflict resolution as well as conflict genera-

tion as the development process proceeds [Hef. 42 : p. 82].

As we have seen, there is support that learning, argu-

mentation, and a designer's world-view are iirpcrtdnt

elements in software design.

F. SCFTSIHE DESIGN HAS AN ORGANIZATIONAL CONTEXT

At first glance, the casual reader is apt to say "lou

are stating the obvious." Yet much of the current work in

software design igncres the obvious. Land provides seme

evidence for this:

1. Users are uncertain about the affect the final system

will have on their individual roles in the organiza-

tion and on them personally.

^Compare Boland's "dance" and Robey's "constructive
conflict" for software design to Rittel's "argumentation" in
design (Chapter II)

.

40



www.manaraa.com



www.manaraa.com

2. The cbservaticn that the user operates within formal

systems and that the formal procedure of the existing

systems have teen overtaken by less formal (but often

mere effective) unauthorized procedures.

3. The fact that those who are involved in the analysis

Ficcess--DP specialists and users— are often not

aware of strategic decisions made by senior manage-

ment which could have an important bearing on the

workability of the syst9m.

4. New systems almost certainly include innovations;

users and analyst/designers cannot predict managers*

responses to innovations. Conjectures about peofle^s

behavior are no substitute for knowledge, and in

innovation, such knowledge is not ordinarily avail-

able. [Ref, 29: p. 64]

Although Land cited these points as reasons for communi-

cations problems, they can egually serve as indictments

against current software design. That is, org anizational

aspects cf software design are often ignored.

Wasserman points out that organizations and computing

environments are highly dynamic and that information systems

must be designed for a changing organization [Ref. 35].

Chafin states that as computer systems become more deeply

involved in the operations of organizations, they have

larger social effects on these organizations. A new

computer system may change the organization structure, the

power structure, or the overall information flow structure

in an organization [ Hef - 40]-

41



www.manaraa.com



www.manaraa.com

Zmud and Cox rsccgnized the organizational aspects of

software design in their discussion of a "change" approach

to design and implementation:

The change approach to MIS implementation strives to
create an environment in which change will be accepted
through the active involvement of affected organiza-

;y ^ _
trust and committment must develop between participants
so that a free exchange of beliefs and opinions is
possible. [Eef- 53 : p. 37]

Zmud and Cox make no reference to wiclced problems, yet

their change process is recommended when (1) the organiza-

tional activity involved is ill-defined, (2) the MIS must

interface with other organizational systems, and (3)

substantial organizational change is expected. Compare

these characteristics to Horst Rittel's characteristics of

wicked problems (Chapter II).

Although there are several articles and references to

organizational aspects of software design, two authors stand

cut. Kling and Scacchi have written two extensive articles,

[Ref. 59 and 60], which stress the need for an awareness of

and attention to organizational and social aspects of system

design. Their latest work [Ref. 60], develops a family of

models (called web mcdels) which they believe helps tc "make

tetter predictions of the outcomes of using socially complex

computing developments". These models are contrasted to

•discrete-entity'— rational and traditional— models. Their

work attempts to abstract a set of principles,

characteristic of web models, from analyses published in the

literature.

U2



www.manaraa.com



www.manaraa.com

Kling and Scacchi stress the importance of perspective

in the "social analyses of ccmputing". They identify six

perspectives, four of which predominate:

1. Formal-rational

2. Structural

3. Interact ionist

U. Pclitical

Their point in discussing these perspectives is that each

"casts a different light" on the significant aspects of the

design problem.

^

Further discussion of the work of Kling and Scacchi is

beyond the scope of this work. The point to be made of

their work is that software design is conducted in an orga-

nizational framework:

In contrast tc the discrete-entity models, which gain
simplicity by ignoring the social context of computing
develof ments, web models make explicit the salient
conections between a focal technology and its social and
political contexts. [ Ref • 60 : p. 3j

G. SCFTHiHF DESIGH IS EVOL0TIONA2Y

Much cf the current practice in software design is

constrained by a model popularly termed the • waterfall*

model. Tcir Gilb aptly sums up the attitudes of most soft-

ware professionals:

It seems that they recognize, as yet, only one tyoe of
life cycle. In particular, they seem to be speaking of
a revolutionary life cycle (like the birth or a human)
as opposed to a mere evolutionary life cycle (such as
the development of the human species). [Ref- 34j

'Kling and Scacchi present an extensive discussion of
the social dynamics cf system design in [Bef. 59]. Their
discussion is based on the four perspectives mentioned as
well as two others: human relations and class politics.

U3



www.manaraa.com



www.manaraa.com

ether authors also complain about the current life cycle

model. Brittan is concerned that the serial definition of

the project development cycle, known as the linear strategy,

embodies cne fundamental concept: that an activity follows

logically from its predecessor so that each stage is

complete before the next begins [Ref. 36]- McCracken and

Jackson seem to be the most critical of the current life

cycle model. They believe -chat any form of life-cycle is a

project management structure imposed on system development.

Furthermcrs, they fcint out that the current life cycle

modal is either a very much simplified model (which is

worthless) or unrealistic [Ref. 27]. Podolsky [Ref. 2^* ]

argues that the current model (which he terms 'Classic

Development') is "very, very good" when it is successful,

but thax when it fails, "it's horrid". He attributes the

success and failure cf Classic Development to the type of

problem which will be solved: classic development is good

for well-defined, highly structured, change-resistant prob-

lems; it fails when presented with an ill-defined prcblem,

changing participants, and changing requirements.

Zvegintzov [Ref. 57] has twc objections to the current life

cycle mcdel. First, it does not portray a systems life,

only the creation, development, or youth of a system. It

does not include adulthood and is vague about operation and

maintenance. Second, it is noz a cycle, it portrays a

linear path and does not, as a cycle must, return tc its

beginning [Ref. 57]. Gladden even goes so far to say that

the software life cycle may be harmful to the software

profession. See Figure 3.3 for Gladden's representation.

These arguments, and others, begin -co raise a question

about the validity of the linear strategy. The linear

strategy places a great deal of reliance on the studies and

efforts lade in the earlier 'stages' of software develop-

ment. Yet this strategy ignores the fundamental aspects of

U4



www.manaraa.com



www.manaraa.com

REQUIREMENTS

a

DESIGN

a

IMPLEMENTATION

Figure 3-3 Typical Life Cycle Sepresentation,

45



www.manaraa.com



www.manaraa.com

design described ir Chapter II. Brittan places this

predicanient in perspective:

In a majority cf cases, particularly when the organiza-
tier. lespcnsible for designing ana implementing the
system has experience of similar systems and when the
users are clear about what taey want, the linear
strategy is pefectly satisfactory and produces gcod
regults. Too often, a project starts on the linear
strategy but the initial requirement is vague, over-
ambiticus or fails to meet the real need: in fact the
requirement is still fluid. The project then proceeds
in a series of shcit locps as the requirement solidi-
fies. . . . [Bef. 36]

Now it becomes clear why Gladdan's representation in Figure

3.3 appears as it does. To make up for the reality of soft-

ware design, the practice is to use a 'loopy linear*

strategy. That is, to proceed in a series of relatively

haphazard and short-term locps. Again from Brittan:

Some loops are inevitable- One of the symptoms of
excessive loopiness is a feeling of antipathy between
the different grcups associated with the project.

.n g what - n e y
be anncyed by the apparent lack of good project manage-
ment as the system overruns its budget in both time and
cost. [Ref. 36]

Brittan gives other reasons why the linear strategy is pocr:

1- when analysts refine the requirements of a system,

their investigations and studies frequently threw up

problems which were not suspected at the outset.

2. the linear strategy can only be based on studies and

investigations made by analysts; users, who determine

the success of the system, are not usually adept at

the conjecture and extrapolation needed to understand

these studies.

Land [Ref. 29], Brooks [Ref. 46], Podolsky [Ref- 24], Zave

[Ref.. 32], and Lehman [Ref. 47], to name a few, have all

argued that a system will require substantial, continuing

46



www.manaraa.com



www.manaraa.com

changes after the client begins to use the system. We tsnd

tc relegate this phenomenon to * Maintenance* . But this

isn't enough. Consider this comment by Land:

The conventional model of the systems life cycle assumes
that an analysis and feasibility stage precedes the
detailed design stage and that this will be followed by
a specificiaticn and agreement of the specification for
the system. At that point the design of the system is
often frozen. For a typical information system the
staaes precedina the design freeze take between 20^ and
35 ?{ of the total time required for the develoment of the
system. For between 65% and 80% of this time the design
of the system is not to be modified, even though tne
"world" is changing all the time. In practice, even a
frozen design gets modified if the system is seen tc be
becoming irrelevant to real requirements. Further,
inconsistencies in design are discovered during the
construction chase as a result of "systems queries".
[Ref. 29 : p. 58]

Software design, no matter how hard we try otherwise, is

simply net linear. The literature clearly supports an

evolutionary strategy, yet our practice has not recognized

this.

H. SUHHABY

The preceeding discussion shows that there is support in

the literature for reassessing our view of software design.

Software design is symmetrical, but we currently do little

to recognize that symmetry. Software design is satisficing,

yet there is constant amphasis on optimization, often for

its own sake and forsaking approaches that enhance th^

useability or quality of the software. Perhaps, without

consciously noting it, we are also concerned with the "test"

design and dooming the project to mediocrity, at best, and

perhaps catastrophe.

Software design, especially for large-scale systems, is

certainly a "wicked problem." All the evidence is there; it

only remains to acknowledge that fact. We are well aware

that communications between the designer and user are

HI



www.manaraa.com



www.manaraa.com

all-impcrtant. Yet, we have not really given much thought

to the medium of exchange. Software design is a learning

experience. Designers learn that projects are more complex

than expected and users learn never to trust designers.

This may he a harsh critique, but the point is well illus-

trated: all parties gain something from the experience of

software design. Let us recognize the worth of this-

Tfce organizational context of software design has long

been ignored, particularly in military systems. We must not

forget that the computers are to help the people in a s yste m

l2 ESlJSIJ wel l, not to control the people as a part of the

system. Finally, we are beginning to racognize that soft-

ware design is evolutionary. There really is no "snd" to a

projecx, simply a restatement of rhe goals originally iden-

tified.

although seven characteristics have been seated and

discussed, their irterdependencies are obvious. Non-^ of

these characteristics is munually exclusive of another.

Rather, €ach builds en the ether. Although there ar« innum-

erable implications in that statement, the remainder of this

work will examine one approach which may help us to consider

the sever characteristics of design in software design.

48



www.manaraa.com



www.manaraa.com

lY. THE SOFTWABE PROTOTYPE

A. IHTBCDOCTION

For the last 35 years, systems software developicent has

taen based en the sc-called •system development cycle.* As

shown in the last chapter , there are several arguments

against such a cycle. Perhaps the most -ailing argument

lies in cur process controls. Several authors [Hef. 61 ,

62] have pointed out that in response ro uncertainty and

increased complexity, there is a tendency to define and

structure (and increase!) management controls.

Correspondingly, precise requirements definitions have been

emphasized. Berrisford and Wetherbe [Ref. 61] believe that

there is a major conceptual flaw in the traditional view of

systems development. This is that system design assunies

that management knows what information is needed and it is

difficult, if net unrealistic, to ask managers to d<=fine

their information requirements on paper.

Hew do software designers cope with this problem? Rich

and Waters [Ref. 63] have explored this luestion and

theorize that software designers cope with complex design

problems by using several mental tools, one of which

involves simplifying assumptions. The use of simplifying

assumptions is both necessary and commonly used when

constructing large and complex systems:

Given a ccmplex programming problem, expert programmers
typically choose simplifying assumprions which, thouah
false, allow them to arrive rapidly at a program which
addresses the important features of the problem without
beina distracted by all of its details. The simplifying
assumptions are then incrementally ^retracted with corre-
sponding lEodif icaticns to the initial program. Often
the mam questions can be answered using only the
initial program. [Ref. 63 : p. 150]

49



www.manaraa.com



www.manaraa.com

This us€ * of simplifying assumptions in software design

is very much like the idea cf the tentative solution, - which

was introduced in Chapter II. Such a tentative solution is

only a simplified system. Earl [Ref. 64] calls these

simplified systems prototypes. Carrying this one step

farther, Naumann and Jenkins define a prototype system as

"a system that captures the essent ial feature s of a later

system." [Bef. 62]. The sections wnich follow will

describe the prototype process, the role of prototypes as

models, the ways in which prototypes are used and concludes

by showing how the set of seven desing elements are

supported by software prototypes.

B. THE PEOTOTYPE PROCESS

The terms protctype and protot ype systems have become

rather ccmmon lately, found in both the management litera-

ture (Harvard Business Review, for example) and the software

engineering literature (proceedings of conferences and work-

shops especially). Although i:he term prc noty pe has become

standard, early descriptions of the process were called

"heuristic development" and "iterative enhancement"

[Ref. 61, 65].

Regardless of how each of us may use the term, there is

general agreement that the main purpose of prototype systems

is exploration and experimentation; "the aim of the early

prototype is to learn, to find out, to discover." [Ref. 68,

64, 66]- In keeping with their purpose, prototypes are

relatively inexpensive, flexible, and simplified systems.

Bally, Brittan, and Wagner describe the prototype process:

In the prototype strategy, an initial and usually highly
simplified prototype verson of the system is designed,
implemented, tested and brought into operation. Based
on the experience gained in rhe operation of the first
prototype, a revised reguirment is esrablished, and a
second prototype designed and implemented. The cycle is
repeated as often as is necessary to achieve a

50



www.manaraa.com



www.manaraa.com

satisfactcry operational system, bearing in mind the
possibly escalating cost or each subsequent cycle; it
may welj. be that orly one prototype is necessary before
producing the final system. [ Bef . 68: p. 23]

From this description, four steps are evident [ Ref - 62]:

1. Identify the user's basic information requirements.

2. Develop a working prototype.

3. Iirplement and use the prototype.

4. R€vis€ and enhance the prototype.

Figure 4.1 illustrates the prototype process-

A prototype system must be implemented quickly, perhaps

in hours or days, certainly no more than two or thrae weeks.

The advantage here is in the user-designer interactions:

the user is given a working system to operate and criticize,

the designer receives responses based on the user's experi-

ences. The quick response of the designer guarantees that

the first prototype will be incomplete. This aspect is

important: there is an explicit understanding between the

user and designer that zhe system will be incomplete, that

a prototype is msant to be modified, expanded, supplemented,

or supplanted [Ref. 62].

C. PBOTCTYPES AS MOCFLS

Many authors consider prototypes to be models [Ref. 64,

82r 69]. As models, prototypes reduce risk and test alter-

native designs through live operation. [Ref- 64].

Three aspects of prototypes as models are imporxant.

First, models are abstract:

The critical skill cf system design is . . . claimed tc
be explication of the implicit models in managers*
minds, of their decision-makina processes and views cf
their organisation and environment. [Ref. 64 : p. 163]

51



www.manaraa.com



www.manaraa.com

Figure 1.1 The Prototype Model.

Second, managers prefer siaiple modals at first. As they

begin to understand the models, they become involved with

the design and implementation to build more realistic

systems. [Bef. 6U].

Third, a prototype is subject, to modelling effects.

That is, as a model, the prototype is only a limited version

of the final system. So, a prototype is one kind of scale

model, accurate in some ways, inaccurate in others

[Ref. 69].

52



www.manaraa.com



www.manaraa.com

D- STBATEGIES TO PROCOCE PHOTOTYPES

Three strategies are generally recognized for producing

prototypes, 1) methodologies (in current use) , 2) executable

specifications (state-of-rhe-art and research issues) , and

3) automatic programning (a research topic)

.

'' • I^S 'Methodolcqy * Strategy

There are three basic methodologies which are used

to produce software prototypes. First, in screen and repcrt

formatting, the designer produces a set of user interfaces

which will be similar to the final sys-em. Second, in

partial and incomplete implementation, the designer and user

identify only a subset of the total problem. Third, for

selective iiplementation , the designer develops components

of The final system and then integra"te the components.

[Ref. 71]

2 • Hxecutable S£6ci fie ations

The executable specification, -he second tschnigue

for prototyping, is a current 'hot' ropic in the computer

science literature. Davis [ Hef . 72] describes a software

tool, the Feature Simulator, which "executes" formally

writter requirements specifications for real-time systems.

Feather [Ref. 73] proposes a methodology for developing

prototypes from specifications based on the transformation

of "specification constructs" into an implementation.

Perhaps the most ambitious work on executable specifications

is that reported by Cohen and others. They believe that "a

prototype serves to mitigate both imperfect communication

and lack of forsight (sic)." [Ref. 74]

Ihe solution Cchen and others have adopted separates

the imperfect communication and lack of foresight issues by

having a formal specification language which unambigiously

53



www.manaraa.com



www.manaraa.com

describes systems, and a separate tool (symbolic execution

system) which helps the reader to understand any particular

specification. This tool can be used by the specification

writer to validate the specification and by the implsmentor

(or buyer) to understand what exactly has been specified

(i.e., hew the pieces interact). "Given the specification

and the tool, a prototype will not be needed." That is, if

the designers can ccmpletely specify the requirements and

they then use the symbolic execution system, Cohen and

others believe that ii: is no longer useful to develop a

prototype

.

Eut consider the following comment by Taylor and

Standisb:

. . . . having a precise specification language is of no
help, since tha user really doesn^t know what statements
to make in such a language— that is, he can't articu-
late his needs if he doesn't know what they are reaard-
less of whether or not there is a precise language for
stating them. [Hef. 78 : p. 160]

Executable specifications clearly are controversial,

especially when they concern prototypes. Whether such a

technique gains prominence will depend on advances in soft-

ware engineering tools.

3 • Autcnatic Prcgramming

Automatic programming is probably farther away,

technically, than the exacutable specification. Automatic

programming can be thought of as programs that help people

write programs. The general goal of automatic programming

is tc allow the software designer to think cf the problem

abstractly, in a way which is natural and comfortable.

Automatic programming systems are characterized by specifi-

cation methcds (formal, 'by example', or natural language),

the target language (the language in which the system writes

54



www.manaraa.com



www.manaraa.com

ths finished program)

,

the problem area (area of intended

applicazicn) , and the method of operation (theorem-proving,

program transformation, knowledge-engineering, or tradi-

tional ficblem solving) [Ref* 100]. One advantage cf auto-

matic programming is that it could allow for more

informality than an executable specification language

[Ref. 70].

E. OSES CF PROTOTTPIS

Generally, there are three uses of prototypes, 1) to

clarify user requirements, 2) to verify the feasibility of a

design, and 3) to create a final system. [Ref. 75].

1 . To Clarify the J se r * s Requirements

Ey far, the most popular use of prototypes is to

clarify the user's requirements. McCracken [Ref. 67]

believes that traditional written specifications do not

bridge the communications gap between the designer and the

user. He states that prototypes en courag e users to change

their minds about what they want, until the system is

useful.

To highlight the problems encountered in require-

ments documentation. Mason and Carey [Ref. 76] make a

distinction among three types of documentation:

1 . A textual list of requirements (the most commonly

used)

2. An interpretive model (gaining in popularity, espe-

cially in military systems)

3. A working model— a prototype

The textual list, the traditional method of

describing requirements, has a distinct disadvantage. There

is a psychological distance between a textual list and what

the users will eventually receive. A lengthy (often boring)

55



www.manaraa.com



www.manaraa.com

document does not easily convey a realistic ssnse of hew the

system will operate and suit the user's needs [Ref- 76.].

Interpretive models include SADT and USE. Th=se

models use top-down decomposition to manage the complexity

cf large systems, Ihe more detailed these tools are (or

become), the mor^ specialized the language used. This pres-

ents a significant learning burden to the user [Ref. 76].

Erotctypes, en the other hand, present a more real-

istic view cf the system to the users. The users can easily

relate their experience with -he prototype to thair

requirements.

2- 12 Verify the Feas ibility of Design

When prototypes are used to verify the feasibility

of a design, the designers and users are evaluating the

internal design of the software [Ref. 75]. After the proto-

type is developed, several aspects of the design could be

evaluated: the prototype could be used to implement and

evaluate certain design decisions; the prototype could be

used to develop and test a production system; the efficiency

cf the prototype could be examined; or the prototype could

be developed on one machine, and the final system imple-

mented en the target (or production) machine, when it

becomes available.

3 • I5 Create the Final Syst em

Prototypes may be used to create the final system.

This means that part or all of the final version of the

prototype may beccme part of the production system

[Ref- 75]- Examples of this technique might include data-

base managenment system (DBMS) applications. For example,

once created, the prototype might remain unchanged espe-

cially if the system efficiency is satisfactory. On the

other hand, critical (or perhaps all) of the system would be

56



www.manaraa.com



www.manaraa.com

r€Cod€d for efficiency, either in the DBMS language, in a

host language, or in assembly language.

F. FBOICIYFES ADDRESS THE ESSEITIAL DESIGN ELEMENTS

'' • Prototyping is a Symmetrical and Adaptabl e Process

Prototypes explicitly address the symmetry and adap-

tation necessary in software design. Naumann and Jenkins

[Ref. 62] believe that prototypes provide an appropriate

response to changes in the development process (protlems to

solve and available resources) as well as to changes in the

environment. Bally, Brittan, and iJagnar state that the

prototype strategy is an admission of failure, an admission

that there will be circumstances when we will be unable to

develop the right system on the first attempt [Hef- 68].

Earl's comment perhaps best expresses the overall idea of

symmetry and adaptation:

The prototype 3ysts=ni . . . allows . . . d^siar. bj
discover y as much as by prediction, where the unexpectea
results niay be as significant for design as the
expected, (emphasis added) [ Bef . 64 : p. 166].

2- Prot oty ping 'Tames' the Wicked Proble m

In Chapter II wicked problems were described as

problems where the information is Gonfusi::ig, where there are

many clients with conflicting values, and where the raniifi-

caticns in the whcle system are thorougly confusing.

Compare those characteristics to the experiences of Asner

and King:

. . . . the prototype approach works when users do not
know their specific requirements, [where] the effective-
ness of any on particular approach cannot be easily
assessed without rsal-life experience, . . . [where]
the system will be an integral part of the day-to-day
activities of the users. . . . [Ref- 79 : p. 30]

57



www.manaraa.com



www.manaraa.com

Developing prototypes does more than recognize

wicked frcblems. The designers and users of prototypes

explicitly acknowledge such things as:

1. Wicked problems have no definitive solution— as Eally

and others have stated, prototypes are an admission

that more questions can be always asked and more

information can be requested.

2. Every fornulaticn of the wicked problem corresponds

to the foriulation of the solution (and vice

v€rsa)--there is an explicit understanding between

the desinger and user about basic assumptions that

will be made when designing a prototype, especially

the first version; the protcype strategy is designed

tc cope with a fluid situation and fuzzy requirements

[Bef, 68]-

3. Wicked prcblens have no stopping rule— designers and

users realize that prototypes may be continually

modified or refined until some exxernal limit (time,

resources, production need, user satisfaction, etc.)

is reached.

U. Solutions to wicked problems cannot be correct or

false. They can only be good or bad--protctyping

explicitly recognizes the notions of "technically"

correct and "psychologically" correct. Users contin-

ually ask for refinements until they become satisfied

(i.e., where the system is technically and psycho-

logically correct)

.

5. In solving wicked problems there is no exhaustive

list of adiiissable operations— prototypes allow

designers and users the freedom to explore and exper-

iment.

6. No wicked problem and no solution to it has a defini-

tive test— designers and users become quickly aware

that prototypes clearly identify tradeoffs. The

58



www.manaraa.com



www.manaraa.com

pictctype may te flexible and sacrifice (i.e., "fail"

the test for) efficiency.

3* Sof twa re Prototyping is Satis ficin g

Recall from Chapter II Simon's argument that people

accept alternatives which are good enough, not because they

want to, tut because they have no choice. In Chapter III

evidence was presented which clearly shows that software

designers constantly balance trade-offs and are fcrced to

accept satisfactory alternatives, rather than an optimal

alternative.

The process cf developing a prototype explicitly

deals with satis ficing by recognizing the interaction among

the user, designer, and system. Conflicting goals and

priorities are inevitable. Negotiation between the designer

and user will lead tc a satisfactory system.

In the prototyping process, the designer constructs

successive versions of the system, compromising and

resolving conflicts tetw^ien "che context (-hat is, user n9€ds

and desires) and the form, as constrained by technology and

economics [Bef. 62 : p. 37].

^ - Prototyping is Comm unicatinq

The prototype facilitates communication between the

designer and the useri The basic model of the prctoype

process shows that ccmmunication is a necessary element of

the process. Without communication there is no prototype.

Mason and Cary £Ref. 76] believe that prototyping overcomes

the fundamental problems of ccmmunication between users and

designers. Naumann and Jenkins [Bef. 62] emphasize the

roles participants have and believe that prototyping

stresses the interactions between the user and the designer.

59



www.manaraa.com



www.manaraa.com

Farticipatior in software design can be pai^.ful

[Ref. 6 4], yet

Users play more active roles in prototyping than is
possible with traditional development methods. Users
set the development pace by the time they spend using
and evaluating the prototype. They decide when the
cycle cf evaluation and refinement ends. [Ref. 62 : p.
37]

L r

The prototype approach exploits the interaction

between the designer and user. Contrast this with the care-

fully mcnitored interaction in the tradirional approach.

5. The Softwa re Prototype is a Learning Aid

Several authcrs [Ref. 64, 68, 66] agree that the

very purpose of the prototype is to allow the user tc learn

about the system; experience with the system is the most

valuable product. When prototyping, both designers and

users learn, developing a system which is more realistic in

its econcmic purpose, organizational context, and technical

performance [Ref- 64 : p. 166].

Earl [Ref. 64] believes that prototype systems

permit action learning and that there are few other vehicles

available for live and flexible organizational development.

As a vehicle for learning.

. . . . the protoype model is the most effective repre-
sentation possible since it enables evaluation of the
proposed design in con -cext . The prototype model is the
representation tEat an"^cipates evaluation of the design
in its operating environment. [Ref. 62 : p. 33]

60



www.manaraa.com



www.manaraa.com

6 • lii Ft o t ot y p € Processs Accounts for Organizat iona l

Issues

As pointed out in Chapter III, the organizaitcnal

context is an important consideration in systems and soft-

ware desicn. Informal organizational structures and the

sub-elements of organizations play large roles in the

success cr failure of a system. As an experiment, the

prototype provides an opportunity to test the impact of a

systeu and experiment en the organization's interfaces, at

least reducing the risk of a nonviable system and also

providing opportunities for introducing and monitoring job

satisfaction improvements, organization development, and the

like [Ref. 6U: p, 164]. Earl believes that prototypes are

relevant to organizations because of individual differences

among pecple in the organization:

- . . . the prototype methodology mav be relevant, for
different values, perceptions and perspectives do exist
among different interest groups, but the different
implications and impact of a system design mav net be
apcrsciated until it is implemented; indeed'all the
options may not be apparent." With a working prctotvpe
system design values mav be explicated and stakehciders
counter the technical thrust of the specialists. .

[R€f. 64 : p. 165]

To say that prototyping "solves" the organizational

issues in software design is, however, going too far.

Prototyping deals explicit ly with the issues, yet requires

quite a bit of "orchestration". The management cf the

process is not without political consequences [Ref- 66].

Hew do we measure the worth of a prototype as it

contributes to our design of software? Earl answers this

question with the following statement:

Possibly the most valuable contribution of the prototype
methcdclogy is to foster a climate of system apprecia-
ticn, user creativity and experimentation, intelligent
use and organisational learning. [ Ref . 64 : p. 166]

61



www.manaraa.com



www.manaraa.com

"^ » li® Prototype Process is Evolutionary

That the process of protoyping is incremental and

evolutionary shold ccne as no surprise. The important point

is that the prototype process, again, explicitly deals with

the issue. Software design has been shown to be evolu-

tionary, yet traditional software development is unable to

deal with it. Naumann and Jenkins [Ref, 62] state, as a

•principle', that "[p]rot otyping represents and parallels

the dynamic process of growth, change, and evolution

existing in any living system."

A survey of the literature reveals an interesting

pattern among the models for prototyping. Although most

authors will agree that the traditional life cycle is not

evolutionary, with the exception of Naumann and Jenkins

[Bef. 62], (see also figure 4.1) Basili [Ref- 65], Bally and

ethers [Bef- 68], Earl [Bef. 64], Mason and Carey [Ref. 76],

and Zvegintzov [Ref. 57] all attempt tc force a c ycli c

structure on software development,

Perhaps a review of evolution is in order. When

some thing (animal, crganizaiton, or design) evolves, it

begins simply (a few cells, a few people, a few details and

many simplifying assumptions) and grows in complexity, often

changing remarkably from ixs humble beginnings. This

process is clearly net cyclic. Rather, a betner image is

the spiral, much like the spiral coil of the shell of the

Nautilus, growing in size yet maintaining the essential

nature it began with.

Figure 4.2 illustrates the evolutionary nature of

prototypes. Each "chamber" can be considered to be a single

prototype, the wall of the "chamber" denoting the point of

refinement and enhancement. The only restrictions on the

number of "chambers" (prototypes) are in the environment

(exhausted resources, end of time, too complex or unwieldy,

and so en)

.

62



www.manaraa.com



www.manaraa.com

Figur« 4.2 Evolution of Prototypes-

G. SOMMiEY AND INTEBMEDIATE CONCLUSIOHS

This chapter has explored the multi-faceted aspect of

the software prototype: the process, its role as a model,

construction strategies, and uses. The chaptsr concludes

with a persuasive argument that prototypes explicitly

support the seven design slements.

63



www.manaraa.com



www.manaraa.com

Several conclusicns can be stated at this time. First,

the current practice cf software engineering only recognizes

a few cf the design elements described in Chapter II.

Software design completely ignores the fact thax: these

elements are interrelated and mutually dependent. The

traditional method of software development only worsens the

problem.

Second, the prototype approach to software design and

development naturally supports the set of design elements.

For example, the prototype approach encourages, requires,

and exploits the interaction and communication between the

user and designer. Ey making this explicit, prototypes will

lead to a better design.

Third, developing better systems, delivering them on

time and within budgets are in our best interests. The

prototype approach will allow software engineers and

designers to achieve these goals.

The next chapter briefly describes software engineering

environments and how such an environment could and should

support software prototyping.

64



www.manaraa.com



www.manaraa.com

V. THE SOFTJABE EMGISEEHING EHVIBONMENT

A. IMTBOEOCTION

Most authors agree that prototyping has become possible

through recent develcpments in computer technology [Ref. 61,

62]. Ccllectively, this technology is called the software

engineering environment (SE2) [aef. 83], the programming

support environment [Eef. 107, 105], or the software devel-

opment environment [ Bef . 84 ].

There are as many definitions for, as there are

references to, a software engineering environment. The

definition offered by Hausen and Muellerburg s^ems to be the

most satisfying:

[A Software Engineering Environment is ] an instrumented
and organized software development laboratory where many
people cooperate viith each other in a fully organized
worxina orocess, in the design^ construction, examina-
tion, tuning and maintenance or software. [Ref. 83 : p.
147].

'

Generally speaking, the literature cites two approaches

to computer-aided design for software development: 1) the

SE2 is a systematic approach, and 2) toolboxes or toolkits

which support specific software development activities

[Eef* 85]. The UNIX development environment is an excellent

example of -^he toolkit approach [Ref. 86]. The facilities

of UNIX may be thought of as a "tool kit" from which the

developer can select tools that are appropriate for a

specific task. Detailed discussions of the UNIX environment

and available tools can be found in [Ref- 87 , 88].

The toolkit approach, however, has been criticized

because:

65



www.manaraa.com



www.manaraa.com

1. Tools are not organized to support specific software

d€V6lcpment methodologies;

2. Tools do not capture management or control data for

software development; and,

3. Individual tools are largely uncoordinated [Ref- 89].

Lauber has reviewed 11 tool systems in practical use and

finds that only two systems (PSL/PSA and PDL) are m wide

use. 8

There are several "programming" environments in active

use (for example, Interlisp [Ref. 90 , 86 , 91] ), or

planned (for example, the Ada programming support environ-

ment (APSE) [Ref. 93] ). Unfortunately, there is no 3E2

which specifically supports the prototype process. This

chapter will first describe some general characteristics of

SE2s and then explain those elements of SS^s which are

needed to support software design and prototyping.

E. CHARACTERISTICS Cf SOFTIARE ENGINEERING ENVIRONHENTS

'' • development Support Task s

There is general agreement that an SE^ supports

three development "tasks": 1) software production manage-

ment, 2) technical aspects of software development, and 3)

user participation in applications development [Ref. 83, 94

, 95]. An SE2 aids software management by "capturing"

information about design decisions and the progress of the

development itself. An SE2 supports software development by

providing automated tools. During rhe developmen*: of

specific applications, the SE2 places special emphasis on

the rcle of user-designer interaction.

^Erofclem Statement Language/Problem Statement Analyzer
and Prcgiam Design language. A derailed review of the
various tools and environments in current use can be found
in S^ffl^csium on Software Engineering Environmen ts , Huenke,
edi'^Eor.

~

66



www.manaraa.com



www.manaraa.com

2. Int*; grated

An integrated SE^ will support the three development

tasks by unifying the tasks into an ensemble. Integration

applies to the ease of using and the ease of documenting

those activities associated with individual tools [Ref- 84].

Perhaps cne of the mere important characteristics of an SE^,

integration makes it easier to combine various tools in

order to perform a specific function.

3. Uni for m

A variety of automated tools are used by the SS2 to support

the thrse development tasks. For reliable operation, the

tools must be consistent with one another [Eef. 8U, 9U , 95

, 96]. If one tool is consistent wirh the rest, the SE^

will be easier to use. It is easier to learn and use

special formats and command structures when they are consis-

tent among all of rhe tools.

^ • Sup por t a Sol ution S trat egy

Ihe technical aspects of software development

require the SE2 to support two solution strategies, cne

gensral and the ether specific. Generally, Soni and others

believe that the SE^ must support different ways of solving

the problem. [Ref- 84]. That is, the SE^ should support

many different ways of solving problems. It should be flex-

ible enough any problem-solving strategy. For the specific

strategy, Wasserman and others believe that an SE^ must

support both the software life cycle model (the • waterfall*

model) and any particular software development methodology

which does not diverge very much from that model [Bef. 94,

95, 97]. In either case, the objective is the same: to

arrive at a solution.

67



www.manaraa.com



www.manaraa.com

5 . Adactabl-s

For practical reasons, an SE^ should be adaptable.

In most organizations, each of the development tasks is

covered by different organizational groups, each wixh their

own styles, attitudes, and so on. Also, the individuals

within each group bring different perspectives to the job.

With such a wide range of personalities, a collection of

tools should bs flexible, changeable, even extensible

[Ref. 8U]. The SE2 should be able to adapt to the design-

er's (or user's) sophistication and should provide defaults.

Defaults cculd be easily changed as users become more

sophisticated [Ref . SU, 95, 96].

6 • Functionally Dnigue

Within each development task, there are a number of

unique functions. To reduce ambiguity, misunderstanding,

and errors, tools within an SE2 must be functionally unique.

That is, they must have a singular purpose [Ref- 84, 94, 95,

96]. Each tool must te limited to a single design function.

"7 • I Int eractive

An SE2 must have interactive system capabilities.

[Ref. 85, 84, 94, 95, 98]. There are two reasons for this:

interactive systems aid communication among the participants

in design, and designers can work at their own pace (inter-

actively) rather than someone else's (batch) . User partici-

pation, cne of the development tasks, is simplified when

using interactive systems.

8 • Rec ent D eve 1 c^meiits

Two ideas about SE2s, personal development systems

and a software engineering knowledge base, seem to unify the

three development tasks and embody the characteristics just

68



www.manaraa.com



www.manaraa.com

statfrd. Personal development systems have all of the char-

acteristics discussed (integrated, uniform, support a solu-

tion strategy, adaptable, functionally unique, and

interactive) . Their most important feature, though, is the

dedicated support to a single designer [Ref- 89 , 9U , 95].

A software environment knowledge base would capture informa-

tion about the design activity (for example, design deci-

sions) as well as the development process (a continuous

effort) for managers, designers, and users [Ref. 96]. This

knowledge base would make the information easily available

and wculd be done autcmatically.

C. A SOFTiARE ENGINEERING ENVIRONMENT FOE PROTOTYPES

Mcst authors agree that a 'successful* SE^ must support

a certain view of the design process [Ref. 85, 94, 95, 97].

Following the lead of Lauber [Ref. 85], a collection of

tools, or components, which support the set of seven design

elements of Chapters II and III, and which suppcrt the

develop me r.t of prototypes, covered in Chapter IV, is

presented. This is followed by descriptions of how such

components suppcrt software design principles and proto-

typing.

1 . Technical Co tt£onent

s

There are several components which should be

included in an SE2 [Ref. 62, 75, 79, 83, 101].

a. Database Management Systems (DBMS)

A DBMS serves two purposes in an SE2. First,

the DBMS enables storing and retrieving information about

the design as well as the development process. For example,

a record could be kept of when each version of the prototype

was released, who designed it, relevant design decisions.

69



www.manaraa.com



www.manaraa.com

and so on. Second, a DBMS allows for •quick' design and

programaing of data handling features [Ref- 62, 61, 83].

Becall that the ability for quick turnaround of a working

system to the user is a necessary feature in many proto-

typing situations.

b. Generalized Input and Output Software

Query languages, report generators, and report

writers are often features of a DBMS (for example, FCCOS,

RAMIS II, and NOMAD provide these features) , These features

allow for easy data retrieval and data update. Report

generators can produce complicated reports with minimal

programming effort [ Hef . 61, 62, 79, 101]-

c. Graphics Tools

Graphics are ideal for representing the large,

and often complex, s-ructures of non-trivial software

designs. These tools are particularly suited for the ireth-

odolcgies which use structure charts. For exampl-^, Delisle

[Ref. 102] describes a set of graphics- based tools, an Edit

tool, an Evaluate tocl, a Format tool, and a Clean-up tool,

which were developed to support Structured Analysis)

.

d. High-level Languages

High-level languages (variously described as

non-procedural languages, formal specification languages,

and so on) have one objective, flexibility [Ref- 62, 83,

101 ]- Such languages enable the designer to describe" what

to do" rather than "hew to do" it. The system resolves the

procedure and should produce executable machine code. The

designer, given such a tool, can use abstraction to its

fullest extent (the Gamma software engineering system

(Ref- 103], for example, specifically supports abstraction).

70



www.manaraa.com



www.manaraa.com

€. Interactive Systems

I^vices and equipment (for example, w-orking

stations) which support interaction are essential [Hef. 61,

62, 83, 98]. Interactive terminals give users and designers

the perception of rapid and efficient operarion and revi-

sion. Generally, these facilities are adapted from the host

computer or network of the SE2. (Personal development

systems cculd be thought of as extensions of interactive

systems.

)

f, Applicaticn-ori ented Models

Models are an important feature of an SE^. They

are used to support human decision making [Ref. 61, 62].

Examples of models which are potentially useful are finan-

cial lodels (as in FOCUS) or simulation models. Real-world

modelling [Bef. U3 ] is also an important element in the SE^,

g. Tools fci Software Testing

There is clearly a need for tools which siiclify

software testing [Ref. 83, 101]- Hausen and Mu«=llerburg

report that most tools of this type concentrate on verifica-

tion and validation, that is convincing ourselves that the

program will execute properly. They argue that software

tools fcr prcgram testing should cover more than just veri-

fication and validation. They recommend a philosophy of

quality improvement which includes quality assurance

(defining software standards and controlling their cbserva-

tion) , acceptance testing (demonstrating to the user that

the software is acceptable for operation) , and verification

and validation.

71



www.manaraa.com



www.manaraa.com

2 . Su^£ort for Scftware Design

Any SE2 aiust te based on a particular view of- soft-

ware design. [Ref. 65, 94, 95, 97]. The view presented in

Chapters II and III is unique, although elements of that

view may be supported in different ways by different

systems.

Ihe SE2 must recognize, and provide facilities for,

the symmetrical and adaptable process of design. If the

solution to a problem changes the problem, features of the

SE2 must allow revision, interactive use by clients (it is

their problem, after all), and record-keeping, especially of

decisions.

9

The satisficing aspect of design may best be met by

using the modelling tools of the SE^ , Simulatior. tools can

help answer "what if" and performance questions. Financial

models can help decide economic questions. Planning,

contrcl, and estimating models can also help to decide on

the wcrth of various tradeoffs.

The "wicked problem" aspecr is particularly vexing

in the SE^. High-level languages can help by allowing an

abstract description as a formulation of the problem. The

abstract statements are then transformed by the system into

concrete (that is, executable) code [ Ref . 105, 106, 107].

Communications between the user and the designer is

aided by interactive systems. Graphics also aid user (and

designer) comprehension. Alexander and others have shown

how the notion of patterns helps bridge the communication

gap. Kuc, and others, IRef. 80, 84, 108, 109, 110, 111]

have adopted this concept in their "forms- based" software

development environment. The 'forms' within the system are

'White [Ref. 1041 oresents a model for recording rele-
vant information acout design decisions durina software
develop me Et

.

72



www.manaraa.com



www.manaraa.com

used tc identify and define 'patterns* that are afcovs the

level of prcgramming language constructs. Although a full

discussion cf the TRIAD (TRee-based Information Analyzer and

Developer) system is teyond the scope of this work, it is an

excellent candidate for an SE^ which supports software

prototyping.

The interactive facilities and modelling features of

the SE2 will help tc aid the learning process in design.

The notion of 'learning by doing* was introduced in Chapter

III. Tc support that notion, the SE2 should allow the

designer to learn, early, the consequences of a design deci-

sion. The designer trust then be given the chance to revise

his decision, based en the 'operation* experience.

Organizational issues must be explicitly recogrized

in ary SZ2, First, there are organizational resources which

are needed to support the SE^: programmers, operators,

managers, space and facilities, and the computer hardware

assocated with the SE2, Second, the work patterns and work

skills cf the people who work in the SE2 are likely to

change. Unfortunately, most current development environ-

ments stress the environment over the users of the environ-

ment [Ref. 98]. Typically, those environments have "quirks"

which require people to adjust. The system should adjust to

the skills and the preferences of the designers who use it

(using, for example, custom default features). If we

consider the SE2 as an element of a complex organization

[Hef. 59, 60, 98], the environment's interaction with people

is crucial; without that interaction, the SE2 is useless in

any practical sense.

Finally, the SE2 must explicitly recognize the

evolutionary aspect of software design. The current systems

support the waterfall model of software development

[Ref. SU, 95]. The database management system, interactive

facilities, and high-level languages will easily support the

73



www.manaraa.com



www.manaraa.com

evolutionary concept of design. Report generators and

report writers should aid the documenration process as the

design evolves.

3. SupFort for the Prototype Process

The process of developing a software prototype was

covered in Chapter IV. There are four steps in that

process; 1) identifying the user's basic requirenents, 2)

developing a working prototype, 3) implementing and using

the prototype, and 4) revising and enhancing the prototype.

An existing database of the SE^ is ideal for identi-

fiying the user's initial requirements. Hcwever, there are

problems if the database is empty, Kangasallo [Ref, 112]

presents a model in which information requirements are

interpreted as a set of complex queries by the database

management system. Additional features of that ircdel

include a 'program constructor' which generates code based

on the queries. A working prototype is a result of this

model •

Another method depends not only on the database

management system but also en the automated tools within the

SE2. Cheatham [Ref- 105] presents a system in which the

designer and user develop an abstract model of the prcblsm

(possibly from the database). Transformation refinement is

applied (by the automated tools) which results in executable

code--a working prototype.

In both of these instances, the SE2 supports the

development of the user's basic requirments followed fcy an

automated process of developing a working prototype. It is

important that some effort be made to analyze the user's

requirements so that reasonable queries can be made and

reasonable codels (of the problem) can be developed.

74



www.manaraa.com



www.manaraa.com

other systems are available which help to develop a

basic set of user requirements. Some ara quixe complsx

[Ref. 32] acd might be difficult to integrate with the SE^.

Developing a working prototype, quiclcly, should not

be difficult to accomplish in the SE^

.

High-level

languages; code generators; transformation refinement

(mentioned above); application development systems, such as

ACT/1 [Be£. 76] and, application generators [Ref. 75] make

it easier to develcp working prototypes. Ideally, the

system would be completely automated.

An abstract model allows the designer to focus mcr?

easily on the results of his or her decisions, rather than

the implementation details. An abstract model also promotes

flexibility when it is reused. [Ref. 105]

Inplementing and using the prototype becomes much

easier wlren interactive systems are used. User interaction

is essential and interactive terminals allow the user to

perceive rapid operation and revision. They also help to

speed user evaluation [Ref. 62].

Bevision and enhancement are facilitated in th? SE^

by using the database management system, high-level

languages (and abstract models) , the generalized input and

output tools, and graphics tools. The database contains a

record of past designs and design decisions, changes are

easily made to abstract models and high-level language

constructs, default values of the generalized input and

output tools are easily adjusted, and the graphics tocls

will enable both users and designers to spot patterns

quickly. The user is quickly accommodated, the database

management system automatically tracks versions and design

decisions, and the designer is able to defer low-pricrity

details without fear of compromising the design: the SE2

relieves the designer of much, if not all, of the drudgery

normally associated with software design.

75



www.manaraa.com



www.manaraa.com

D. SOHHAEY

The preceding sections have reviewed the characteristics

needed in a software engineering environment, have identi-

fied the components of a software engineering environment,

and have described hew the components interrelate to support

both software design and t.he prototype process.

It is dcubtful that there are any software engineering

environments which support completely the idea of proto-

typing- Tc a limited degree, commercial systems, such as

FOCUS, NCMAD, fiCT/1, to name a few, support particular

aspects cf the prototype process. For example, FOCUS and

NOMAD facilitate applications programming in the business

community by allowing the designer to customize reports or

other appplications for a specific user, or group, based on

an already existing databa se--th6 vice-president of sales

might be interested in the sales of a parxicular product in

a particular geographical area. ACT/1, and other similar

products, make it easiar for designers to customize the

formats cf terminal screens for the user.

The products mentioned here are three of several hundred

commercial and research systems and environments. This

chapter has purposely avoided a lengthy review of any of

those hundreds, and mentions a few by way of example only.

76



www.manaraa.com



www.manaraa.com

¥1. CASE EXAflPLES

The four cases which follow were chosen because in each

there was an explicit decision began to develop and use

software prototypes before the project began.

A. SYMME1BI, EFOLOTICN^ SATISFICIHG, AMD COHHUHICATION

Heckel [Bef. 113] describes the process of developing a

ptototype while designing the Craig translator. The project

team explicitly chose to develop prototypes for several

reasons. First, they were concerned about the problems

which users would a ctuall y experience, rather than these

problems which the designers imagined might be important.

This concern is directly related to the symmetry aspect in

design. That is, the solution and problem interrelate such

that the solution depends critically upon the context of the

problem. In this case, the context is the consumer's use of

the Translator. If the product does not perform as

"expected", it will net sell.

Second, the project team was interested in postponing

decisions about restraints on the final system until they

had to. In other words, their design evolved. The

designers ignored certain restrictions which had been placed

on memory size, as long as they carefully considered the

effects of their decisions on the production version of the

Translator.

Third, the project team planned to use the prototype as

the software specification. Because they had two "versions"

of the prototype, a black box translator and the program

listing, they thought that they would avoid the traditional

misunderstandings and contradictions often found in written

77



www.manaraa.com



www.manaraa.com

software specif icaticns. In this case, the designers were

concerned atout communications, not only between the "user"

and the "designer" but also among themselves.

Heckel's description shows that the prototypes (there

were 30 versions!) were used to clarify requirements and to

verify the feasibility of the design. Heckel states that if

they had been forced to make a particular design decision

earlier than they did, they probably would have made a less

satisfactory decision.

The project was judged a success, although progress

seemed slew and painft:!. Heckel identifies four benefits of

developing prototypes:

1. The project team could keep trying new things;

2. The prototype was a good model of the final product,

sc everyone had similar expectations about what the

product would do;

3. Several decisions could be postponed without

affecting the schedule; and,

U. The designers focused their efforts on opportunities

rather than problems.

The development process had some disappointments: soft-

ware development took longer than expected and the final

product took more menory than expected. Heckel did not

speculate on whether these "disappointments" could have been

avoided. One interpretation is that the designers were

unable tc meet all of their objectives and when time ran out

their design was judged to be good enough. Thus, the

"disappoir.tments" can be attributed to the satisficing

aspect of design, especially the need for more memory. The

designers obviously made a trade-off between the "goodness"

of the product and the amount of memory they had originally

planned.

78



www.manaraa.com



www.manaraa.com

Ihi^ case illu strated how the use of proto type s

addresses the symmetry, evolution , communications,- and

satis ficing aspects of d esi gn.

B. LEIBNING

Hemenway and McCusker [ Bef . 116] describe an exploratory

project which is leading to the development of an order

negotiation and entry support sys-em for telephone service

(the Bell system). The project is the development of the

user interface and the supporting software for the system.

There are two reasons given for building an operational

prototype: 1) to evaluate the user interface and 2) to

assess the feasibility of a particular software architec-

ture. Even though the reasons coincide with two uses of

prototypes (that is, to clarify user requirements and to

verify the feasibility of a design) they are related tc two

aspects cf design. The aspects are learning and communica-

tion fcetween the designer and 'iser.

Prototypes of the software were daveloped to determine

whether a table-driven system could be designed. Prototypes

cf the user-interface were used to determine whether the

user-interface would substantially increase the length of

time service representatives spend on orders (compared to

manual order entry and search).

The case concludes by stating that the results of the

prototype evaluation led to making several recommendations

to the designers of the first release of the system. H ence ,

the prototype served to hel£ the designers l earn more about

their sclut icn and their problem .

79



www.manaraa.com



www.manaraa.com

C. ilCKED PROBLEMS, COMMUNICATIONS, AND THE OBGANIZATIONAL

CONTEXT

Jenkins [Ref. 114] discusses how the decision tc develop

a prototype led to successful development of an automated

data processing facility for the Congressional Budget

Office.

Two aspects of software design are apparent in this

case: 1) communications between users and designers and 2)

the organizational context of the system. Communications

between the designers and users was greatly improved by

using a prototype. Bather than try to decide on the design-

er's effectiveness ty reviewing written specifications,

managers witnessed operating demonstrations. The prototype

also showed non-technical users what it was possible to do

in their application areas with the new tools.

By far the most important aspect illustrated by this

case, is the concern of the designers for organizational

issues. The Congressional Budget Office serves the needs of

the Congress, admittedly a ccmplax organization. So, the

designers needed immediate responses to Congressional

inquiries, because when information is needed, it is often

needed iiiiediately or its value is lost.

This organizational aspect is also closely related to

wicked problems. Secall that wicked problems refer to

social system problems which are ill-formulated, where the

infornaticn is confusing, where there are many clients and

decision-makers with conflicting values, and where the

80



www.manaraa.com



www.manaraa.com

ramifications in the whole system ara thoroughly ccnfusing.

Clearly Congress is faced with these kinds of problems.

There is every reason -o expecr that the Congrss'sional

Budget Office deals with similar problems when responding to

Congressicnal inquiries, lo

Ih^ casg presented b^ Jenkins ill ustra tes how proto types

can aid software design when faced with critica l organiza-

tional issues and wicked problem s

.

D. COBHUNICATION, LEARNING, AND EVOLUTION

Groner and others [ Ref . 115] present a case of using

prototypes to clarify the user's requirements. The case is

unusual because it started with a proposal from outside the

user's ccmmunity. The designers set out to determine if and

how computer tachnclogy could meet the information

processing needs of medical researchers.

This case is a clear illustration of the importance of

communications between the designer and the user and the

representation used for communicating.

Prototypes were required in the requirements analysis
phase because without concrete, working examples our
potential 'osers could not be sura that computer systems
are needed, what functions they should perform, or how
they wculd use them. [Ref. 115 : p. 100*]

Less clearly stated is the implication of learning

during the design process. The intitial design of the

prototype was based on the designer's knowledge about

loconsider the fluctuations from Congress to Congress,
chairman to chairman, committee to committee; from year to
year, week to week, and even from hour to nour during the
Budget Committee markup sessions [Ref. 114 : p. 22]-

81



www.manaraa.com



www.manaraa.com

infornaticn processing needs for medical rssearch.

Subsequent versions were improved based on use by and

comments from clinical researchers. The project partici-

pants

. . . agreed to learn about each other^s disciplines,
then define prcblems and attempt -co devise and evaluate
solutions in collaboration with others in the -araet
user community. [ Bef • 115 : p. 101]

The project used an incremental implementation strategy

(evcluticn) under which major software releases ware sched-

uled approximately every four months. Several hundred soft-

ware changes were made over a period of a year and half.

This case shows how prototypes can be used to create the

final system. I

'

Ih^ £§^f presented by G roner and others is an exce llen r

S^J£2^ 2J hsa c cm m u n

i

ca ti o n

s

, lear ning* an d evolution are

inte rtwined in software des ign . The development cf proto-

types helped all of the de sign participants cope with those

aspects CI s of t. y ar e design .

E. SOMMABY

These cases illustrate how prototypes help designers

cope with the seven aspects of design which were covered in

Chapters II and III. In each of the cases, the authors

point to success. For Heckel, the prototypes led to a

product that was easy to use, had a number of useful

features, and was implemented on a single-chip micropro-

cessor.

i^The case description leads the readar to think that a
"production" system was not developed. Every indication is
that the prototypes evolved into tne production system.

82



www.manaraa.com



www.manaraa.com

Hsmenway and McCusker say only that prototype evaluation

led to reccinmendations to the designers. From this, w^ can

safely infer that the prototype aided the designer*
s
'ander-

sranding of the froblem.

Fcr Jenkins, the overall assessment to the prototype was

positive. Managers liked the idea of a prototype because

there was nc prior commitment to a particular course of

action.

Groner and others believe that the greatest benefi- of

the prototype is that the prototypes are concrete, working

examples cf computer systems which are meeting everyday

needs

.

83



www.manaraa.com



www.manaraa.com

?II. CONCLUSIONS

A new view of design was presented in Chapter II. This

view identifies a set of seven interrelated and mutually

dependent elements which were found in the literature.

Support for these elements was found throughout the computer

and information science literature. The set of seven

elements explains how best to cope with the problems, ambi-

guity, and uncertainty associated with software design.

The process of developing a software prototype is

presented as the most appropriate way to incorporate the

design elements into software design. In fact, the proto-

type process exploits certain elements, such as communica-

tion between the user and designer, to improve the overall

design of the software.

One of the more important conclusions is that software

designers, especially designers of large-scale systems, have

much to learn from designers in other fields. The software

design literature shews little evidenca of influence from

other design fields. This wcrk is a start -oward that

needed transfer cf knowledge.

The software prototype may be the sensible way tc design

large-scale systems. Recall that complex design problems

have been called wicked problems. If some large-scale

system developments are 'more wicked* than others, then

developing prototypes seems to be the only way to design the

system.

Software prototyping enables users and designers to cope

with ill-defined problems and changing requirements. Past

experience indicates that bad technical engineering is not a

problem with software development. Rather, unsatisfactory

design decisions and faulty information are the real

84



www.manaraa.com



www.manaraa.com

problems. Software prototypes provide a mechanism which

allows designers to test their decisions and t,o learn mere

about the problem. The prototypes also allow users a

consTrucyive environmen-c in which to express their satisfac-

tion cr dissatisfaction and a stimulant in learning hew to

deal wi-h their problems.

Software prototypes, however, present special difficul-

ties fcecaus€ -hay ar€ not the universal remedy for software

design problems. Careful management is needed to ensure the

software ptototype is really designed and not just put

together. Careful thought and planning are necessary before

coding begins. Managers, designers, and users must remember

that a software prototype is an experiment. Judgement and

commitment are needed to control er.diiss iteraticns.

Managers nust have the wisdom to know when to step. Often,

while developing successive prototypes, there is a tendency

to delay formally documenting the system. While this

problem is not unique to prototypes, there must be attentive

managenient snd commitment to ensure adTCuat-; and ccuplete

documentation.

In spite of these cautions, evidence indicates that

developing and using software prototypes is the best option

for coping with software design problems, for ensuring the

system is delivered, and for ensuring a satisfied user

population.

85



www.manaraa.com



www.manaraa.com

VIII- RECOBMENDATIONS FOR FURTHER STUDY

A. HABAGEIIEIIT

D€V€lcping software prototypes presents management with

some unusual problems. Many of our current management tech-

niques depend on getting the project done right the first

time [Ref. 117]. As we are well aware, this seldom occurs.

Research is needed to assess the effect of prototype devel-

opment en management.

1. Hew does the manager decide when to cease development

of prototypes? When is the project ended?

2. Hew do managers deal with increased communications

between users and designers? If special maragement

ccntrols are needed, how far should they go?

3. What management style best suits managers of software

pictetype projects?

4. How is the project budgered and controlled? Hew is

pr egress measured?

B. ACQUISITION AND CONTRACT MANAGEMENT

Current acquisition and contract management procedures

and regulations for software appear to be less rhan satis-

factory, within the Federal Government generally, anc the

Department of Defense particularly. Even as these proce-

dures and regulations are changing, there is some evidence

thai: the traditional model of software development may

become required. Ihe Department of Defense has begun to

address the concept of software prototypes in the DoD

Software Technology Initiatives [Ref. D0D8I : p. 69-71], but

this research appears to be concerned only with requirements

specifications.

86



www.manaraa.com



www.manaraa.com

1. Hew can or how should acquititicn and contract

management procedures and regulations accomoda-* tha

principles of design and software prototyp<3s?

2. What is the best strategy for encouraging acceptance

of the software design principles and software proto-

types?

3. How might the elements of software design and devel-

oping software prototypes help with the acquisition

and contract management for embedded computer

resources?

C. OBGANIZATIONAL CCSTEXT

Kling and Scacchi [Ref. 59, 60] reviewed a large number

cf organizational studies while developing their views about

the effect of computer systems upon organizations. When

their ideas are considered within the context of software

prototypes, further research is needed.

1. How will chances in theories of organizational devel-

opment affect the process of developing prototypes?

2. Is any one organizational theory best suited for

scftware design and software prototypes?

3. What are the social dynamics of software design?

4. What are the social dynamics of developing software

prototypes?

D. QUALITY

a fundamental part of design is to satisfy the n^^eds for

quality. Roolce [Ref. Rook82] has concluded that design is

the most important factor in determining overall quality.

Even though one of the objectives of developing software

prototypes is to achieve user satisfaction (a major element

cf quality) , research is needed to determine how prototypes

can affect software quality.

87



www.manaraa.com



www.manaraa.com

1. If w€ accept tbat prototypes will affsct a change in

software technology, how will that change influence

our perceptions of quality? That is, will software

prototypes lead users to expect more than can be me-?

2. How might the concept of Quality Circles fit the

process of developing software prototypes?

3. To what extent will software prototypes influence

software quality? Since prototyping requires

concensus, who is ultimately responsible for product

quality and liability? Should anyone be "ultimately"

responsible?

E. REPRESENTATION

The software prototype is the ultimate representation of

the user's requirements. The written specification anchors

the other end of the representations scale.

1. What other types of representations can aid software

design and the development of software prototypes?

2. What methods ar? suitable for representing abstrac-

tions when identifying a user's requirements before

developing a software prototype?

3. Hew do different representations affect our percep-

tions and real world knowledge? Can different,

initial rapresenta-cions lead to quicker design and

development of software prototypes?

88



www.manaraa.com



www.manaraa.com

9.

LIST OF BEFEBEHCES

1. Bo€hm, Barry W. , Sof tware Engineering Econo mics ,

Prentice-Hall, Inc., EnglewooH Clitrs, New^ersey,
1981.

2.

Amsterdam^ '1978.

3. Bcehm, Barry W. and others. Char act eri sti cs of
Software Q uali ty, TRW Series of Scr^are Technology,
VoI":~17~No rt h -loll and Publishing Co., Amstardair, 1978.

4. Peters, Lawrence J., S oftware Design: Methods and
Techn igues, Yourdon Press, Hew YorTTT T981 .

5. Dunn, Robert and Oilman, Richard, Quality Assurance
|cr Computer So ftware , McGraw-Hill, NewYork, 19827

6. Alexander, Christopher, Notes on the Synthesis of
Form, Harvard Oniversiry Press, Cambridge, MA, T9 54

.

7. Archer, L. Bruce, "An Overviaw of -he Structure cf the

8. Jones, J. Christopher, Des ign Methods, Seeds cf Human
Futures, Wiley Interscience, Jcnn Wiley o SonsT Ltd.

,

IcnacnT 19 70.

Churchman, C. West, "Wicked Problems," Maragement
Science, vol. 14, no. 4, December 1967, p. B-TIH-'cTTn.

10. Alexander, Christopher and others. Pattern Language,
Oxford Press, 1S74.

11. Page, J. K. , "A Review of the Papers Presented at the
Conference," Conf ere nce on Systematic and Int uit ive
Methods in Engineering, ~ TMusxriaT "DesignT
IrclitectureT and' Ccm munications,~Tr C. Uones a n d d .

GT THofnTly, 6^."; TUe McmiTXan Company, New York,
1963, p. 205-2 15.

12. Ellinger, John Henry, Design Synthesis, Vol. 1, Jchn
Wiley 8 Sons, Ltd. London, T95'8.

89



www.manaraa.com



www.manaraa.com

13. Rittel, Horst, "Some Principles for the Desian cf ^n
Educational Svstem for Design," journal of
Architectural Eaucation, v 26, nos 1-2, Winxer-'Spricg,
T9717177'771T 1^=7-57

14. Simcn, Herbert, The Scien ces of the Artificial, MIT
Press, Cambridce, HA, T9FT7

"

15. Bazjanac, Vladimir, "Architectural Design Theory:
Models of the Design Process," Basi c Questions of
Design The ory , William B. Spiller, eaTT TTiefican
EIsivief^ruBlishing Co. , NY, p. 3-19, 197U.

16. Cross, Nigel, Naughton, John, and Walker, David,
"Design Method and Scientific Method," Design Studies,
V. 2, n. U, Oct. 1981, p. 195-201.

17. Smithies, K. W., Principles of Design in Architecture,
Van Ncstrand R€inIiol3"roT7~Naw YorTcT l^'SlT

18. Popper^ Karl Raimund, Obj ective Knowledga, An
Evclut ion a ry Approac h, OxroF3 University Press,
Ionaon7^'^72. " ~

19- Pclya, G., How To Solve It, A Mew Aspect of
Mathematical M e^'Ho d,'"2nd e^lT^ion, Princeton University
pfessT^^rmce^cn, TTew Jersey, 1957.

20. Dcdd, W. P., "Prototype Programs," Com pute r, v 13, n
2, February 1980, p. 81.

21. 0. 5. Decartirent of
for the Software Tec.
3csepTr"C. "BaTz, ^IYj.^r= ^j.

Defense for Research and Engineering
Physical Sciences), May 1981.

22. Madnick, Sturat E. and Donovan, John J. Operating
Systems, McGraw-Hill, New York, 1974. " "

23. Peters, Lawrence,
Design", Softw are
November 1'g7B7~pT~67

"Relating Software Requirments and
E ngineering Notes vol. 3 no. 5,
"=tt:

24. Podclsky, Joseph L., "Horace Builds a Cvcl€",
Datamation, vcl. 23, no. 11, November 1977, p.

25- Voight, Susan, "Program Design by a Multidisciplinary
Team", Proce edings of the First International
Confe rence on 5ortware'"Engia eerinq , ITE'E Compu^r
SccieTy7~'T9757 f7-53=^^

90



www.manaraa.com



www.manaraa.com

26- - Conn, Alex Paul, "Maintenance: A Key Element in
Ccmputer Requirements Definition", Pro ceedings of the
Ccmcuter and So ftware Applications Ccn"fe re nee, "IS^BUT
pT-'Sni^iros;:

-^.e .

27. McCracken, D. E., and Jackson, Michael A., "Life-Cycle
Concept Considered Harmful", Softwa re En gine er ing
Notes, vol. 7, no. 2, April 1982, p. 29^2.

28. Neumann, Peter G. , "Software Evolution and the
.etter from the Editor,
vol. 6, no. 1, January

29.

Dimensions of Change". Letter from the Editor,
Software Engineering Notes, vol. 6, no. 1, January
1"5'8T7 p. T.

Land, Frank, "Adapting to Changing User Requirements",
Infcrmation and Ma nagement , vol, 5, 198 3, p. 59-7 5.

30. Rauch-Hinden , Wendy, "Some Answers to the Software
Problems of the 1980s", Data Communications, vol- 10,
no. 5, May 198 1, p. 57-71)7

31. Lockett, JoAnn, "Using Performance Metrics in System
Design", Software Engineering Notes, vol. 3, not 5,
November TT7B7"fT T5B-T5T:—

32. Zave^ Pamela, "An Operational Approach to Requirements
Specifications for Embedded Systems", IEEE
Transact ions on Software Engineering, vol. SE-8, no.
37~"Say~T9H"27 pT TSTFI-BT:

— ^

33. Canavan, Edward M. , "Systems, Relity and the Systems
Practioner", Journal of Systems Management, January
1981, p. 26-28": —^

34. Gilb, Tom
J

"High- Lev el Systems Architecture: Design
by Objectives", Computer , vol. 13, no. 5, May 1980.

35. Wassernan, Anthony Ira, "A Top-Down View of software
Engineering", Proceedings of the First International
Conference on so rtw are'^ngmeering, I'ETJ'S CompuTer
Socie^y7"T9757 pr"T^T~

36. Brittan, J. N. G., "Design for a Changing
Environment". The Computer Journal , vol. 23, no. 1,
February 1980,"p7 TJ-TTT

37. Peters, Lawrence J. and Tripp, Leonard L., "Is
Software Design 'Wicked'?", Datamati on, vol. 22, no.
5, May 1976, p. 127+.

38. Scharer, Laura L. , "Pinpointing Requirements,"
Datamation, vol. 27, no. 4, April 1981, p. 139-151.

91



www.manaraa.com



www.manaraa.com

39. Horning- J. J., "Program Specification:
Ob£€rvarioDS, " Frogra m specification , J.
ed.. Lecture Notes In Computer Science,
Sprmger-Verlag, Berlin, 1982, p. 5-18.

IS£U3c and
Staunstrup,
vol. 134,

40. Chafin, Roy I., "The System Analyst and Software
Requirements Specifications", Proceedin gs cf the
Computer and S oftware Applications ronfersnc e, 19BtJ7

41. King, Williair R. , and Rodriguez, Jamie I.,
"Participative Design of Strategic Decision Support
Systems: An Empirical Assessment", M ana gem snt
Science, vol. 27, no- 6, 1981, p. 717-726.

42. Rotsy, Daniel and Farrow, Dana,
Information System Development:
Empirical Test", " . - •

January 1982,

"User Involvement in
A Conflict Model and

Mana gement Science, vol. 28, no- 1

43. Greenspan, Sol J. , Mylopoulos,
Alex, "Capturing More World
Requirements Specification",
International confere nce
Compu'fer~'Socre'ty press, S
p. ^25-234.

John, and Eorgida,
Knowledge in the

44- Gilb, Tom, "Evolutionary Development", Software
Engineering Notes, vol. 6, no. 2, April 1981, p. T7.

45. Stavely, Allan M.
,

Software Design Aid
H^^^i r vol. 3, no. 5,

"Design Feedback and its Use in
Systems", Software "Enainserina
November 197"S7'~?^"72-73T

46. Brocks, Frederick P., Jr., The Myth ical Man-

M

onth ,

Essays on Soft war e Engineering , Addison- Wesley Co.,
Hsa'amgr MassacFiisetf s, Ty /b.'

47, Lehman, Meir M. "Laws and Conservation
" Second Softw

20-22 Tugust T57B7-pT 1'5Tr=T45t'

m
Large-Program Evolution," Second Softw are Life Cycle
Manag eme nt W or k sho p,

-'^-^-^ -i^- -TTt-r-w- _ ^-n-n-^i.^-^ -

48- Frank, James W., "Applications Design by Trial and
Error", Infosystems, September 1979, p. 76-78.

49. Hall, Patrick A. V., "In Defense of
Softw are Engineering Notes , vol. 7, no.
p-~T3.

Life Cycles",
3, July 1982,

50. Lawrence,
Dynamics"

,

Confe rence ^..
JccieTy~"Press7
iee-195.

M. J., "An Examination of Evolution
Proce edings of the Sixth International

on sottware Engineering , IrTES" Tompu^r
b liver Spring, laryland, 1982, p.

92



www.manaraa.com



www.manaraa.com

51. Urban, G. L. and Karash, R., "Evlutionary Model
Building", Jo i:rna l of Marketing Researc h, vol. 8,

52. Swartcut. William and Balzer, Robert, "On the
Inevitable Intertwining of Specification and
Implementation," Communi cations of -che ACM, vol. 25,
no. 7, July 19fi2,~p. UJ8-7irT77

53. Zmud, R. W. and Cox, J. P., "The Implementation
Process: A Change Approach", MIS Q uar terly, vol. 3,
June 1979, p. 35-4 3.

54. Bcland, Richard J. Jr., "The Process and PrcducT of
System Design", Manag eme nt Science, vol. 24, no. 9,
May 19 78, p! 8^7^^.

55. Alavi, Mayram and Henderson, John C, "An Evcluticnary
Strategy for I iplemen ting a Decision Support System",
Manageme nt Scie nce , vol. 27, no. 11, November 1981, p.
13T)9-T3277

^

56. Blum, Bruce I., "The Life Cycle— A Debata over
Alternative Models", Software Engineering Notes, vol.
7, no. 4, October 1987, ?.' ' IB-'ZTr.

57. Zveqintzov, Nicholas, "What Life, What Cycle?", AFIPS
Confe ren ce Proceedings, National Computer Conference,
VoIume~5T7 T-gg^T^P^DBI -56 8.

58. Gladden, G. R., "Stop the Life-Cycle, I Want tc Get
Off", Soff^are Engineering Not es, vol. 7, no. 2, April
19 82, p. 35^1^. ~

59. Kling, Rob and Scacchi, Walt, "Computing as Social
Action: The Social Dynamics of Computing in Complex
Organizations." in Ad van ces in Co mpute rs, Volume 19,
Marshall C. Yovits7'"€aT7'~5canemic PressT NY, 1980, p-
249-327.

r r » f

60. Kling, Rob and Scacchi, Walt, "The Web of Computing:
Computer Technology as Social Organization," m
Advances in Comput ers , Volume 21, Marshall C. Yovits,
e^TT^l^dsmic'TressT^NY, 1982, p. 1-90.

61. Eerrisford, Thomas and Wetherbe, James, "Heuristic
Development: A Redesign of Systems Design", MIS
^uarterli, vol. 3, no. 1, March 1979, p. 11-19

62. Nauoann, Justus D. and Jenkins, A. Milton,
"'or Systems
12, p. 2 9-44.

"Prototyping: The New Paradigm for Systems
Development*', MIS Quarterly, September 198:

63. Rich, Charles and Waters, Richard C. , "The Disciplined
Use of Simplifying Assumptions," So ftw are Enginserinc
Notes, vol. 7, nol 5, December 19877 P* r50-15'^.""

93



www.manaraa.com



www.manaraa.com

64. Earl, Michael J., "Prototype Systems for Accountmq,
Information and Control", accounrinq, Organizaticns
and Society, vcl. 3, no. 2, TgTBT^pT 161-T7TJT

65. Basilir Victor E, and Turner, Albert J., "Iterative
Enhancement: A Practical Technique for Software
Development", First Int ernational Conference on
Software EngmeeringT IE£JS computer Society, 1y/5, pT
5B-F2":

—

66. Asner, Michael, King, Alan and Darke, Raymond G.

,

"Prototyping: A Low Risk Approach to Develcpino
Ccmclex Systems, (Part 2— Methodology) ", Business
guarterly, vol. U6 , no. U, Winter 1981, p. Sa-IBT

~

67. Mccracken, Daniel D. , "A Maverick Approach to Systems
Analysis and Design." Systems Analysis and Design : A

Founaation for the llSU^s," WiTIiam ¥. Co^ferman ana
o^TTef sT edsTT ""ETsev ler Science Pablish:.ng Co. , New
York, 1932, p. ua6-45 1.

68. Bally, Laurent, Brittan, John, and Wagner, Karl H., "A
Prototype Approach to Information System Desigr. and
Develcpment" , Inf orm ation and Management, vol. 1,
1S77, p. 21-26.

69. Weiser, Mark, "Scale Models and Rapid Prototyping",
Software Engineering Notes, vol. 7, no. 5, December
l^'ElT'pT T5T-T-E5:

70. Barstcw, David, "Raoid Prototyping, A'atcmatic
Programming, and Experimental Sc:iences: , Software
Engmeerinq Notes, vol- 7, no. 5, December 1^B2, p.
13-1117

71. Blum, Bruce I., "Rapid Prototyping of Information
Management Systems". Software Engineering Notes, vol.
7, no. 5, December i9H7, p. J5-ld7

72. Davis, Alan M., "Rapid Prototyping using Executable
Requirements Specifications", Software Engineerina
NsIjs, vol. 7, no. 5, December 19B77~pT"19-^^.

73. Feather, Martin S., "Mapping for Rapid Prototyping",
Software Engineering Notes, vol. 7, no. 5, December
ig-SZT^F T7=2TI7

74. Cohen, Donald, Swartout, William and Balzer, Robert,
"Using Symbolic Execution to Characterize Behavior",
Software Engineering. Notes, vol. 7, no. 5, December
l?'827'p7 25^327

75. Canning, Richard W. , ed., "Developing Systems by
Prototyping", EDP Analyzer, vol. 19, no. 9, September
IS 81.

94



www.manaraa.com



www.manaraa.com

76. Mascn, R. E. A. and Gary, T. T. , "An Approach to
Prototyping Interactive Information Systems",
Communications of the ACM, vol. 26, no. 5, May 1983,
pT~Tac=35ir":

77. McCoyd, Gerard C. and Mitchell, John R., "System
Sketching: The Generation of Rapid Prototypes for
Transaction Based Systems", Softwa re Engine erin g
Notes, vol. 7, DO. 5, December 19"8T7 p.'^27-T3'2.

78. Taylor, Tamara and Standish, Thomas A., "Initial
Thoughts on Rapid Protoyping Techniques", Software
Engin eer ing Notes, vol. 7, no. 5, December 19B2, p-

79. Asner, Michael and King, Alan R., "Prototyping: A
Low-Risk Approach to Devleoping Complex Systems",
Business Quarterly , vol. 46, no. 3, Autumn 1981, p.
3TJ-1T?T—

80- Ramanathan, J. and Shubra, C. J., "Use of Anotated
Schemes for Developing Prototype Programs," Software
Engineering Notes, vol. 7, no. 5, December I^E^, p.
i-ni'inv:

—

81. Heitmeyer, C. , Landwehr, C. and Cornwell, M., "The Use
of Quick Prototypes in the Secure Military Message
Systems Project", Software Engineering Notes, vol. 7,
no. 5, December 19H77''P-~"E5^7.

82. Spiegel, Mitchell G. , "Prototyping: An Approach tc
Information and Communication System Desian",
Performance Evaluation Review, vol. 10, no. 1, Spring
l^Bl, p. ^-17.

83. Hausen, Hans-Ludwig and Muellerburg, Mcnika,
"Architecture of Software Systems in theContext of
Software Engineering Environments," Systems
Architecture, Proceedings of the Sixth ACM Eur opean
Regional'Ccnf erence- "TTC Science an"3TechnoIogy "Fress
IIIi^l^ Sn3frey7~Engiand, 1981, p. 147-157.

84. Scni, Dilip, "Design and Modeling of TRIAD, an
Adaptable, Integrated Software Environment," Computer
Science Guest Lecture, Naval Postgraduate School,
Monterey, CA, March 1983.

85. Lauber, Rudolf, "Development Support Systems,"
CcmjBUter, vol. 15, no. 5, May 1982, p. 36-46.

86. Wasserman, Anthony I., "Automated Development
Environments," Computer, vol. 14, no. 4, April 1981,
p. 7-10.

87. Kernighan, B. ii. and Plauger, P. J., "Software Tocls,"
First' Intern ational Conference on Sof tware
Engineering, T'EhU coi5puter'"'Socie^y, 1975, p. 8-13. ~

95



www.manaraa.com



www.manaraa.com

88. Kerniqhan, Brian W. and Mashey, John R., "1h€ Unix
Proqranrming Environment," Comp uter, vol. i4, no. H,
April 1981, p. 12-24*.

89. Gutz, Steve, Wasserman, Anthony I., and Spier, Michael
J., "Personal Development Systems for the Professional
Programmer," Co mpu ter, vol. 14, no. 4, April 1981, p.
45-53.

90. Barstow, David R. and Shrobe, Howard S. , "Guest
Editorial: Programming Environments," I EEE
Transacti ons en Soft ware Engineering, vol. SE-7, ""no.
57~3€T^m59f T^8Tr~pr"TITI9-T5T}7

91. Teitelman, Warren and Masinter, Larry, "The Interlisp
Programming Environment," Computer, vol. 14, no- 4,
April 198 1, p. 25-33.

92. Wegner, Perer, "The Ada Language
Software Engine ering Notes, vol. 5,
pT-8^"ZI7 —^

and Envircnraenx,

"

no. 2, April 1980,

93. 0. £. Department of Defense, "STONEMAN," Ha^uirements
for Ada Progra mming Support Environments , TeBruary

94. Wasserman, Anthony I., "Toward Integrated Software
Development Environments,: Scientia, vol. 115, 1980,
p. 66 3-6 84.

95, Wasserman, Acthony I., "Auromared Tools in -hs
Information System Development Environment," Automated
Tools for Information Systems Design, H.-J. 5chnei'31r
an'd"! . T. ¥asserman , €^7, 1Tor^'h= Hoi land Publishing
Co., Amsterdam, 1982, p. 1-9.

96. Rajaraman, M. K., "A Characterization
Design Tools." Software Engineering Not es,
4, October 198 27~pT"TTr=1T:r

of Software
vol. 7, no.

Department of Defense, Ada Joint Proaram Office,
Concepts and Reguirements,

97. 0.5,
Ada Met hodol ogie s:
TTovember T9B7.

; vj u J. ^<= ui — ii -^ ,

98. Prentice, Dan, "An Analysis of Software
Environments." Software Engineering Notes,
5, October 19 8 1; p. T9-27.

Development
vol. 6, no.

99. Korzybski^ Alfred, Science and Sanity, An Introd uction
to Ncn-Aristotelian ?ys"Eems and"7?eneral~?emantics, 4tn
eHi^ion, "" orelace Ey "HusseTT """Heyers, H."D., The
International Ncn-Aristotelian Library Publishing Co.,
Lakeville, Connecticut, 1958.

100. Barry
Ha
Ta.

Avron and Feigenbaum, Edward A.

ndpcok of Artificial Intelligence, Vol. I
uTmann , ~Tnc77~Xos ITItos, raliTornia, 198 2.

ed. The
II, William

96



www.manaraa.com



www.manaraa.com

101. Ewers, Jack and Vesssy, Iris, "The Systems Develcpraent
Dil€mma--A Prcgrammmg Prespective, " MIS Quarterly,
June 198 1, p. 33-4 5.

102- Delisle, Norman d., Menicosy, David E. , and Karth,
Norman L. , "Tccls for Supporting Structured Analysis,
Autom ate d Tools for Information sxstems Design, H.-J.
3clneT3er an^ 1. T. tTasserman, eHs., "nortl-Holland
Publishing Co., Amsterdam, 1982, p. 11-20.

103. Falla, M- E. , "The Gamma software engineering system,"
The Comp uter Jo urnal, vol. 24, no. 3, 1981, p.

104. White, John R., "A Decision Tool for Assisting with
the Comprehension of Large Software Systems,"
Autom ate d Tools for I nforma rion Syst ems Design, H.-J.
^"Eneider ant. 1. T. IJasseraan, "e^s. , ^orxTT-Holland
Publishing Co., Amsterdam, 1982, p. 49-65.

105. Cheatham, Thcmas E., Jr., "Programming Support
Environments," Computer Science Guest Lecture, Naval
Postgraduate School, Monterey, CA, December 15, 1982.

106. Lundberg, Bengt, "IMT— An Information Modelling Tool,"
Automated Tools for Information Systems Design, H.-J.
JclineTSef an^ 1. T. Tfasserman, "e^s. "TIortTi-Holland
Publishing Co., Amsterdam, 1982, p. 21-30.

107. Cheatham, Thcmas E. , Jr., "Comparing Programming
Support Environments," Software Engineering
Environments, North-Holland PuBIisTTing Co., Ims^efSam,
is-siT"?:—r-R2 5.

108. Kuo. Jeremy and others, "An Adaptable Software
Environment to Support Methodologies," Technical
Report TRIAD-2, Department of Computer and Information
Science, Ohio State University, January 1993.

109. Kuo, H. C. , Li, C. H., and Ramanathan, J., "A
Form-Based Approach to Human Engineering
Methodologies," proceedings of the 6th International
Conference on scttware Engine ering , IFEE Computer
Science "Press, I^HTJ p. 23'5-2&3.

110. Kuo, H. C. , and others, "System Architecture of an
Adaptable Software Environment," Department of
Computer and Information Science, Ohio State
University, Technical Report, TRIAD-TR- 1-83

.

111. Ramanathan, J. and Soni, D- , "Design and
Implementation of an Adpatable Software Environment,"
to be published in the J ournal of Com puter Lan guage s.

97



www.manaraa.com



www.manaraa.com

112. Kangasallo, Hannu and others, "System D— An Integrated
Tccl for Systems Design,' Implementation and Data Base

67-83

113. Heckel, Faul. "Designing Translator Software,"
Datamation, vol. 26, no. 2, February 1980, p. 13a-138.

114. Jenkins, C. Wesley, "Application Prototyoing: A Case
Study," P erfor manc e Evaluation Revie w, vol. 10, no. 1,
Spring 19H17"pT~2T-27.

115. Grcner, Gabriel P., and others, "Requirements Analysis
in Clincial Research Information Prccessina -- a Case
Study," Computer, vol. 12, no. 9, September 1979, p.
1CC-i08.—

116.

117. Keus, Hans E., "Prototyping: A More Reasonable
Approach to System Development -" Softw are Enqineerinq
Notes, vol. 7, no. 5, December 19 877"pr"^7-?5.

118. Rocke, Denis, "What is Quality and How is it
.Maintained?," Frc cee din gs of the Roval So cie ty of
Lcr.dor, Vol. 3 8TT7~'8"~Tune 1^27"*?. "2ir5^617

*

98



www.manaraa.com



www.manaraa.com

INIIIAL DISTBIBOTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 2231 £*

2. library. Code 1U2
Naval Postgraduate School
Konterey, CA 93940

3. Cepartirent Chairiran, Code 59
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

4. Curricular Office, Code 37
Ccmputer Technology
Naval Postgraduate School
Monterey, CA 93940

5. Professor Gordon C. Howell
Department of Information Systems
Georgia State University
Atlanta, GA 303C3

6. CAPT Bradford D. Mercer, USAF
Code 52Zi
Naval Postgraduate School
Monterey, CA 93940

7. Associate Professor Roger D. Svered
Code 5 2Ev
Naval Postgraduate School
Monterey, CA 93S40

8. Assoc. Professor Poaer H. Weissenger-Bavlon
Code 54Wr
Naval Postgraduate School
Monterey, CA 93940

9. LCDS John R. Hayes, USN
Code 54Ht
Naval Pcsrgraduate School
Monterey, CA93940

10- Mr. Michael R, Kirchner
4343-204 Americana Drive
Annandale, VA 22003

11. Professor A. Milton Jenkins
Operations and Systems Management
Graduate School of Business
Indiana University
Elccmington, IN 47405

12. Mrs. Mary Jane Kirchner
135 S. ElfflwooQ Ave.
Oak Park, IL 60302

99

No. Copies



www.manaraa.com



www.manaraa.com

13. Air Force Contract Management Division
AFCKC/KSR
Ccmfuter Systems Contract Management Division
Embedded Computer Resources Focal Point
Kirtland AFB, NM 87117

100



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com

Tresis

02120

K(i97' "'"the software enSl"



www.manaraa.com


